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Abstract

While it is expected that in the center of every galaxy there is a black hole, in some galaxies the
region around the black hole shows significant activity. Those objects are called active galactic
nuclei. Some active galactic nuclei form a highly energetic outflow of matter, so called jets, that
are tightly collimated and can reach far beyond the host galaxy. There are still few details of
the jet physics known with certainty. Jets are assumed to consist of a highly relativistic plasma
and are powered by the accretion of matter onto the black hole or even the black hole itself. The
radiation spectrum of jets is strongly non-thermal and energetic emission is observed which can
only be explained by the presence of ultrarelativistic particles with suprathermal energies. The
acceleration site of those is expected to be far from the black hole and a variety of acceleration
mechanisms have been proposed. It is an open question which plasma conditions and radiation
mechanisms dominate and extensive modeling is done and simulations are conducted to better
understand the nature of these complex objects.

In this work, details of the jet structure and composition are reviewed before discussing the
framework of equations that is used to describe the therein contained plasma. In the test-particle
limit these results in the cosmic-ray transport equation describing the propagation of charged
particles. Several mechanisms capable of accelerating particles in the jet to high energies are
considered, focusing on diffusive shock acceleration (also known as first-order Fermi acceleration).
A shock is a steep gradient in the plasma bulk velocity which can cause particles to accelerate
when crossing the shock several times due to diffusion. A set of particles undergoing diffusive shock
acceleration will eventually show a power-law spectrum in energy. A framework for the numerical
solution of the cosmic-ray transport equations is discussed, based on a Monte-Carlo method using
stochastic differential equations. This method is tested on diffusive shock acceleration. It is
shown that the algorithm is in principle capable of replicating the behavior expected from analytic
solutions, while care must be taken for the choice of integration step sizes. Acceleration is found
to lose efficiency and show steeper power laws if the advection and diffusion is not thoroughly
balanced and if the numerically required shock smoothing is too strong or weak. Furthermore,
the choice of the integration scheme is shown to impact the numerical accuracy signifcantly. The
basic Cauchy-Euler scheme fails to accurately predict the solution and a semi-implicit second-
order scheme is shown to reproduce expected results significantly better. Emission mechanisms
describing the electromagnetic radiation produced by the charged particles in the jet plasma are
discussed. Corresponding losses are incorporated in the transport equation and the resulting
particle distribution is used to predict spectral energy densities. It is demonstrated that the
synthetic spectrum can be compared to observations.
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Zusammenfassung

Man geht davon aus, dass sich im Zentrum jeder Galaxie ein schwarzes Loch befindet. In einem
Teil der beobachteten Galaxien zeigt die Region um das zentrale schwarze Loch starke Aktivität.
Diese Regionen nennt man aktive Galaxienkerne. Manche aktiven Galaxienkerne emittieren einen
hochenergetischen Materiestrom, der als Jet bezeichnet wird und weit über die Galaxie seines
Ursprungs hinaus kollimiert ist. Obwohl bereits 1918 zum ersten Mal ein Jet beobachtet wurde,
sind immer noch wenige sichere Details über seine Physik bekannt. Es wird angenommen, dass
Jets aus einem hochrelativistischen Plasma bestehen und die Akkretion von Materie des schwarzen
Loches oder das schwarze Loch selber die mit dem Plasma transportierte Energie bereitstellt. Das
elektromagnetische Spektrum der Jets ist kein thermisches Spektrum und Emission wird auch weit
entfernt vom schwarzen Loch beobachtet. Diese Phänomene lassen sich nur durch ultrarelativistische
Teilchen und deren Beschleunigung in der Nähe der beobachteten Emissionsregionen erklären.
Welche der möglichen Mechanismen für Teilchenbeschleunigung und Emission von Strahlung
tatsächlich ablaufen ist eine offene Frage, die durch Modellierung und entsprechende Simulationen
geklärt werden soll.

In dieser Arbeit werden die Details des Jet-Aufbaus und der Jet-Zusammensetzungen gezeigt
und die grundlegenden Gleichungen zur Beschreibung des Plasmas diskutiert. Weiterhin werden
verschiedene Mechanismen der Beschleunigung geladener Teilchen veranschaulicht, vornehmlich
die Fermi-Beschleunigung erster Ordnung. Die Fermi-Beschleunigung erster Ordnung tritt an
Schock-Fronten auf, welche steile Gradienten in Parametern des Plasmas darstellen. Wenn Teilchen
effizient an Schocks beschleunigt werden, konvergiert ihr Impulsspektrum zu einem Potenzgesetz.
Ein Modell basierend auf einer Monte-Carlo-Methode mit stochastischen Differentialgleichungen
zur numerischen Lösung der Transportgleichung kosmischer Strahlen wird diskutiert und am
Beispiel der Fermi-Beschleunigung erster Ordnung getestet. Es wird gezeigt, dass der Algorithmus
das zu erwartende, physikalische Verhalten aufweist, wenn eine sinnvolle Wahl der Größe der
Integrationsschritte getroffen wird. Die Beschleunigung ist weniger effizient und zeigt daher steilere
Potenzgesetze wenn Advektion und Diffusion nicht in einem sinnvollen Verhältnis zueinander stehen
oder wenn das von der Numerik benötigte Glätten des Schocks unpassend ist. Des Weiteren ist die
Wahl des Integrationsverfahrens von zentraler Relevanz, wobei das grundlegende Cauchy-Euler-
Verfahren nicht in der Lage ist, die richtigen Ergebnisse exakt vorherzusagen. Im Gegenzug wird
ein semi-implizites Verfahren zweiter Ordnung gezeigt, das deutlich exaktere Vorhersagen trifft.
Darüber hinaus werden Emissionsmechanismen der beschleunigten, geladenen Teilchen diskutiert.
Die daraus resultierenden Verluste können zur Transportgleichung hinzugefügt werden und aus
den Impulsspektren der numerischen Lösung können spektrale Energiedichten berechnet werden.
Diese können mit Beobachtungen verglichen werden.
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1. Introduction

Active galactic nuclei are on many scales amongst the most extreme objects that can be found
in our universe. Located in the center of galaxies (hence their name) they emit vast amounts of
energy in form of electromagnetic radiation and are the most luminous, persistent objects observed.
In the center of active galactic nuclei themselves there is a black hole of very high mass which,
while naturally not radiating itself, is the ultimate source of energy of an active galactic nucleus
through its gravitational potential. Typical masses of the central black hole reach from 1 · 106 to
1 · 1010 solar masses which is approximately 2 · 1036 to 2 · 1040 kg and the active galactic nucleus
region typically emits 1 · 1043 to 1 · 1047 erg s−1 (Woo and Urry, 2002). Because of these properties
and the resulting unique physical conditions in the environment of active galactic nuclei they
offer unmatched opportunities for research on scales not achieved anywhere else. In contrast to
the possibilities, research on active galactic nuclei requires huge effort in building telescopes and
detector systems since their large distance from Earth makes them hard to observe despite their
high radiative power.

Many active galactic nuclei are emitting a so called jet which is a large-scale, highly collimated
matter outflow which can extend far beyond the host galaxy. The first observation of a jet is
attributed to Curtis (1918) who observed a “curious straight ray”, as he described what we now
call the jet of the active galactic nucleus M87. The radiation detected from jets ranges over the
whole electromagnetic spectrum and shows complex non-thermal behavior which hints at a complex
set of prevalent physical conditions. This is different from what astronomers expected for an
accumulation of usual stars, which apart from absorption lines show a thermal spectrum, and
left them both puzzled and intrigued for over a century up until today. Jets are one of the main
sources of radiation observed in radio galaxies, quasars and blazars and emit radiation from the
radio band extending through the optical and X-ray band up to highly energetic γ-rays. An open
question to this day is the composition of the matter in the jets and the conditions therein that
lead to the emission across the whole electromagnetic spectrum. It is clear from observations that
non-thermal emission is dominating since smooth power-law spectra extending over many orders of
magnitude are found. Remarkably, the flux spectral index is observed universally at around −0.5
to 0.5 in the radio band in many different sources (Abdo et al., 2010) so a common mechanism is
probable. The radio emission is due to synchrotron radiation which results from relativistic charged
particles orbiting under the influence of a magnetic field. For the observed synchrotron spectrum it
is neccessary that the emitting particles have ultrarelativistic energies. Processes that are expected
to be involved in the acceleration of those are the first- and second-order Fermi processes, also
called diffusive shock acceleration and momentum diffusion. Diffusive shock acceleration occurs at
shock fronts in the plasma, which can be described as infinitely thin gradients in pressure and bulk
velocity. If particles with momentum much higher than the background plasma cross a shock front
multiple times due to diffusion they gain energy in each crossing. In contrast, momentum diffusion
happens when particles randomly scatter at plasma waves which also leads to acceleration since
net gains in energy are more likely than losses. Both mechanisms are explained in more detail in
section 3.2.

Since in situ measurements of jet conditions are impossible astronomers must rely on models
predicting the radiative output and the comparison of those with actual observations. Equations
governing the plasma conditions can analytically only be solved under very simplified conditions
so that numerical methods were used to predict observations, since modern computers made it
possible. The large-scale structure of a magnetized plasma can be described by the equations of
magnetohydrodynamics (MHD) which treat the plasma as a fluid subjected to Maxwell’s equations.
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1. Introduction

They are commonly simulated using MHD codes such as PLUTO (Mignone, Bodo, Massaglia,
et al., 2007) which are able to resolve and reproduce the observed large-scale structure of the jet
and its launching from disk winds (Porth and Fendt, 2010; Pudritz et al., 2007). In addition to
that it is necessary to find small-scale models which can describe the acceleration of particles to
ultrarelativistic energies as required by the observations. This regime is governed by a Fokker-Planck
transport equation when the system is described in test-particle approximation, i.e. the acceleration
of particles has no substantial effect on the large-scale structure. The coupling of both scales may
not be negligibly small since some amount of energy is extracted from the plasma by the accelerated
particles. The large-scale MHD and small-scale cosmic-ray transport can be simultaneously solved
in both the relativistic regime using particle-in-cell simulations (Mignone, Bodo, Vaidya, et al.,
2018) or Lagrangian tracer particles (Vaidya et al., 2018) and in the nonrelativistic regime (Winner
et al., 2019). An alternative method to solving the small-scale propagation and acceleration of
cosmic rays is the use of stochastic differential equations, first proposed for cosmic-ray transport
by Achterberg and Krülls (1992). For an equation of Fokker-Planck type an equivalent stochastic
differential equation can be found which can be solved efficiently using a Monte-Carlo method. Its
advantages are the absence of the need to impose a discrete grid on the phase space and its very
straightforward extension to multi-threaded processors. In contrast to finite-difference methods
for solving differential equations, using stochastic differential equations also stays numerically
stable when extending to more dimensions (Kopp et al., 2012). It has been successfully applied in
simulating the transport and acceleration of cosmic rays in AGN jets (Achterberg, Gallant, et al.,
2001; Krülls and Achterberg, 1994; Zhang, 2000) and the transport of energetic particles in the
heliosphere (Dröge et al., 2010) but convergence issues caused by the infinitely thin shock front
have also been pointed out (Achterberg and Schure, 2011). In this work the method of solving
cosmic-ray transport equations using stochastic differential equations is studied in the environment
of jets from active galactic nuclei. This is done to estimate if this method is a useful tool for
efficient calculation of synthetic observational signatures from jets in the context of large-scale
simulations. These can possibly include the production of synthetic spectral energy densities or
synthetic lightcurves of blazars.
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2. Active galactic nuclei

The structural complexity of active galactic nuclei (AGN) combined with the sparsity of observa-
tional detail made astronomers believe for a long time they found many different types of objects,
not realizing they were looking at only a single phenomenon. This led to the rise of a lot of different
terms for classes of observations, for example radio galaxy, Seyfert galaxy and quasar. Eventually,
the unified model was introduced, which explains a variety of observations as single type of source
seen from different angles, and the term “AGN” in its modern sense was proposed. After decades
of use, the observational classes were well established and are still used even after the general
consensus about the unified model of AGN. The commonly used picture of an AGN is shown in
Figure 2.1 which consists of a supermassive black hole in the center, surrounded by an accretion
disk and a dust torus both in a common plane. Despite being small in comparison to the whole
structure, the black hole is the central motor of the AGN providing the energy driving the rest of
the AGN through its gravitational potential. Matter from surrounding stars and the interstellar
medium spirals into the black hole at an accretion rate Ṁ , forming an accretion disk, and heats
up due to dissipation which in turn leads to radiation. To explain the luminosities observed in a
bright quasar approximately 100 M⊙ have to be accreted per year (Courvoisier, 2013). The best
resolved insights of the inner region of an AGN are from the sources M87* and SgrA*, observed by
the Event Horizon Telescope (Event Horizon Telescope Collaboration et al., 2019, 2022). The mass
of the black hole in the center of an AGN can be estimated using the Eddington luminosity which
for a black hole with mass M is the luminosity that is required so that the radiation pressure
overweights the gravitational force. In the case of spherical-symmetric accretion it is given by

LEdd =
4πGMmpc

σT
≈ M

M⊙
· 1.3 · 1038 erg s−1 . (2.1)

Measuring the accretion flow luminosity imposes a lower limit on the black hole mass since if the
mass would be any lower the accretion disk would be blown away from the black hole and could
not be observed. Therefore if the black hole mass is higher, the accretion rate and in turn the
accretion flow luminosity will decrease again, reaching equilibrium.

The presence of the black hole and the properties of the magnetized accretion disk can lead to
the launching of jets approximately perpendicular to the accretion disk. The jets are large-scale
structures extending far from the galaxy itself, forming hotspots of high emission and terminating
in lobes. They consist of an outflow of plasma which is propagating at highly relativistic velocities
as can be inferred from subsequent radio observations (e.g. Lister et al., 2009). They are the
central objects under scrutiny in this work. The core region is surrounded by clouds of ionized gas
forming the broad- and narrow-line regions, further described below, and a dust torus. The latter
is a region which is assumed to lie around the core and accretion disk hindering the radiation from
passing through because of its optical thickness. In the following an overview of the properties of
AGN and especially their jets is given.

2.1. Observational classification

Mainly depending on the angle between the line of sight from Earth and the orientation of the
accretion disc, surrounding ionized clouds and the jet in which the AGN system is seen from Earth,
but also on the presence or absence of a jet, the variety of seemingly unconnected sources can be
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2. Active galactic nuclei

Figure 2.1.: The standard model of active galactic nuclei. Different phenomena observed are
unified into a single typical anisotropic structure which is randomly seen from dif-
ferent angles from the perspective of Earth (Urry and Padovani, 1995). Note
that jets can be launched from both sides and not at all, too. Illustration
by Emma Alexander, licensed under the Creative Commons licence (CC-BY).
https://emmaalexander.github.io/images/unified agn.png
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2. Active galactic nuclei

explained. The jets, if existing in a particular source, are most likely bipolar, i.e. one jet is emitted
on both sides of the AGN.

Seyfert galaxies

Seyfert galaxies, named after Carl Seyfert, first caught the attention of astronomers due to
their unusual broad emission lines observed in the optical range. They are further split into
two categories, namely Seyfert I galaxies and Seyfert II galaxies, depending on whether broad
emission lines are present. The AGN contains clouds of ionized gas which are excited by the
emission from the accretion disk and therefore radiate emission lines themselves. Emission lines
are Doppler-broadened because the orbital velocity of the gas increases the closer it is to the black
hole. Therefore clouds close to the core are in the so-called broad line region and clouds further
from the core are in the narrow line regions. Depending on the viewing angle different line widths
are observed. Additionally the density of the galactic medium decreases as ρ ∝ r−δ, δ = 1 − 2
with the distance from the core (Bicknell, Dopita and O’Dea, 1997). This allows for the emission
of forbidden lines further away from the core which are emission lines only observed in very low
densities and therefore not on Earth. In Seyfert galaxies not only the active galactic nuclei can be
seen but also the surrounding galaxy which indicates that they are both closer to Earth and less
luminous than quasars, which outshine their host galaxy. They are also characterized by typically
not showing any jet structures. The emission-line features observed in Seyfert galaxies are found
across most types of AGNs, the prominent exception being BL Lac objects.

Radio galaxies

Another type of AGN are radio galaxies whose prominent feature is the intense emission in the radio
band, orders of magnitude higher than the radio emission of our own galaxy. Alfvén and Herlofson
(1950) proposed first that this emission is due to synchrotron radiation of charged particles because
of the non-thermal power-law spectrum and the detected polarisation. First only observed as point
sources and misnamed “radio stars” high-resolution radio images resolved the presence of jets
in those galaxies which are the distinguishing factor for most radio galaxies. Similar to Seyfert
galaxies, radio galaxies can also show narrow and broad emission lines depending on where gas
clouds are on the line of sight from Earth or obscured by the torus. One distinguishes between
radio-loud and radio-quiet AGN. The main difference is that in radio-loud AGN a jet emits a
substantial part of the total emitted radiation while in the radio-quiet case no such jet is observed.
They also differ in the type of galaxy they live in: radio-loud and radio-quiet AGNs seem to exist
preferentially in elliptical galaxies and spiral galaxies, respectively (Wilson and Colbert, 1995).

Fanaroff-Riley classification

Fanaroff and Riley (1974) categorized radio sources in terms of the position of their brightest spots.
Sources with brighter spots closer to the center of the source are called FR class I objects and
sources with brighter spots further out are called FR class II objects after the initials of the authors.
They observed that FR-I sources typically have lower luminosities than their FR-II counterparts.
In the high-luminosity regions the spectra are generally flatter than in low-luminosity regions which
indicates that the age of radiating particles increases as luminosity decreases.

Quasars

When the line of sight is approximately parallel to the jet axis (usually < 10◦) the source in
question is a quasar. The major contribution to the emission from these sources is considered
to originate from the relativistic jet, the angle between the jet and the line of sight being small
(Blandford and Königl, 1979). In this case the extent of the source in the plane of the sky is
relatively small which is why they were named quasi-stellar radio source, later abbreviated to
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2. Active galactic nuclei

quasar. It is also common to talk about radio-loudness or quietness of quasars, similar to radio-loud
and radio-quiet galaxies. In the case of radio-quiet quasars the source of the radiation is a more
intriguing question since no jets are observed. Liao et al. (2022) correlate radio emission intensity
of these sources with optical/UV variability, which is an indicator for disk activity, and find that
the radio intensity is not correlated with the disk activity, which may point to a weak jet that is
not directly observed. Radio-loud quasars also show high variability in their intensity, sometimes
over orders of magnitude, in between days in the case of γ-rays and weeks in the case of radio
observations.

The most compact quasars typically emit a nearly flat radio spectrum which is thought to
originate from the superposition of many emission components. These sources are called flat-
spectrum radio quasars (FSRQ) and typically show superluminal motion. The term BL Lac refers
to a source which shows only weak absorption and emission features as detected in the optical (Urry
and Padovani, 1995). They are named after BL Lacertae which was the first object with those
characteristics that was observed. Similar to FSRQ they show strong variability in their luminosity.
Both FSRQ and BL Lac are commonly known as blazars. The blazar sequence (Prandini and
Ghisellini, 2022) links the multitude of different observations of blazars to physical conditions. It
shows that the spectral properties of blazars are linked to the mass of the central black hole and
the accretion rate, however, the correlation is rather weak.

2.2. Jets

2.2.1. Launching and power source

The total radiative power of the jet ranges from 1 · 1043 to 1 · 1047 erg s−1 and correlates with the
luminosity of the accretion disk (Ghisellini, Tavecchio, et al., 2014). AGN with more massive
core black holes are generally found to be more luminous in the radio and X-ray band (Merloni,
Heinz and di Matteo, 2003). Launching and powering mechanisms providing this vast amount
of energy can be put into two categories: accretion disk powered and black hole powered. The
powering by rotating black holes has been proposed by Blandford and Znajek (1977) and is known
as Blandford-Znajek mechanism after the authors. A potentially large part of the energy of a
rotating black hole can be extracted, how much depends on the angular momentum of the black
hole. This is possible if it is surrounded by a magnetic field to which angular momentum can be
transferred which leads to an outwards-directed Poynting flux (Romero and Vila, 2014).

Jets can also be powered by the accretion disk, which contains magnetic fields, as proposed by
and named after Blandford and Payne (1982). The fields are dragged along with the rotational
movement of the accretion disk matter when the plasma’s conductivity is high as one would
expect. This can lead to the winding up of the field lines to form collimated magnetic towers
rising perpendicular to the accretion disk (Lynden-Bell, 2003). The highly collimated structure
of the jet can not be explained by self-collimation without taking external pressure into account
(Begelman, 1995). However, in recent years magnetohydrodynamic simulations can reproduce the
jet formation and collimation behavior by the accretion disk over large scales (Ramsey and Clarke,
2019) and in general relativistic MHD studies both the jet launching by the Blandford-Znajek and
the Blandford-Payne mechanism could be shown under different conditions (Dihingia, Vaidya and
Fendt, 2021). Correlations between the activity of the accretion disk and the emergence of knots
visible in the radio band could be found for the source 3C 111 (Chatterjee et al., 2011) supporting
the idea of disk-powered jets.

The mechanism providing energy for the jet is also expected to influence its composition. Black-
hole powered jets are made up of a very tenuous leptonic plasma consisting of electrons and
positrons and are described as a collimated electromagnetic wave (Romero and Vila, 2014). In
contrast, if the jet power originates from the accretion disk, a hadronic plasma is expected. It is
still an open question which of the two mechanisms are, or in which ratio they are, responsible for
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2. Active galactic nuclei

the widely observed emergence of jets and why only some black holes in the center of galaxies form
jets.

2.2.2. Structure and morphology

Jets themselves show varying intensity and spectra along their extent which can be best observed
in radio galaxies when viewing the jet edge on. For observing their structure and their development
the radio band is generally the most useful since with interferometry-based telescope arrays such
as the VLBA (Very Long Baseline Array) or the EHT (Event Horizon Telescope) the highest
resolution images to this day can be made. In radio images jets generally consist of bright spots,
called blobs or knots which are travelling outwards from the core (for example Kadler, Ros, et al.,
2008). Their propagation can either be ballistic, i.e. the knot travels independently from its
environment, or advective with the background jet plasma. Most of the observed knots seem
to be advected with the bulk motion of the jet and many move with apparantly superluminal
velocities ranging from several times up to multiple tens of the speed of light (Lister et al., 2009).
For example in the jet of M87 the apparent velocities are estimated to be within 4 − 6c (Biretta,
Sparks and Macchetto, 1999). Closer to the core the jets are well collimated while further outside
they bend in some sources until the collimation of the jet decreases and it forms looser plumes
that decrease in intensity.

Also the spectrum changes across the jet, where flatter spectra are observed closer to the core
and higher frequency parts decay further outside the central region. Explanations for this behavior
include the increase of the magnetic field strength, leading to a shorter synchrotron loss timescale.
Therefore, particles cannot accelerate to energies as high as closer to the core (Sambruna and Harris,

2012). Another theory is that the bulk Lorentz factor Γ =
(
1 − β2

)−1
decreases and therefore the

apparent intensity in the plasma reference frame of external photon fields decreases. In this case
fewer cosmic rays can scatter external photons to higher energies via the inverse-Compton effect.

Relativistic effects

The velocity of the plasma in the jet is close to the speed of light, therefore relativistic effects have
to be discussed (Romero, Böttcher, et al., 2017). As already mentioned, superluminal motion of jet
features are observed for many AGN jets. The apparent velocity of a feature in the jet is related
to its physical velocity through the angle between the velocity vector and the line of sight to Earth
θ as (Biretta, Zhou and Owen, 1995)

βa =
β sin θ

1 − β cos θ
. (2.2)

This imposes a lower limit on β and an upper limit on the angle θ and suggests highly relativistic
motion for the observed apparent motions. Examples are for βa = 1 at least β ≈ 0.71, θ ≈ 45◦ and
for βa = 5 at least β ≈ 0.98, θ ≈ 11◦. VLBA observations enabled the estimation of the proper
velocity of the jet features. They arrived at Lorentz factors in the range of 5 to 40 (Jorstad et al.,
2005).

If radiating particles are at high Lorentz factors relative to the observer’s frame of reference, the
measured radiation’s frequency is Doppler-shifted and the measured flux is Doppler-boosted (see
section 6.1). The relativistic Doppler factor is given by

δD =
1

Γ (1 − β cos θ)
(2.3)

where Γ is the bulk Lorentz factor. The observed intensity from a radiating blob in the jet is then
boosted by a factor ∝ δ4D. This matches the observation that in the majority of sources only a
single jet is observed. The counter jet is rarely observed because the luminosity of the jet travelling
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towards Earth is relativistically boosted and the luminosity of the jet travelling away from Earth
is de-boosted strongly. This also imposes a bias on the jets we are able to observe: If the jet’s
matter propagates with higher velocities its radiation is boosted to higher luminosities and can be
therefore observed with the available telescopes while slower features remain hidden.

2.2.3. Spectral footprint

The spectrum of a blazar extends over the whole electromagnetic spectrum up to γ-rays and
typically forms two peaks which is commonly known as the double hump spectrum. After radio
observations could provide images with a resolution high enough to resolve the jet as the source of
AGN emission, the development of the Chandra X-ray telescope, for instance, made it possible to
associate also X-ray emission from AGN with jets detected in the radio band (Kadler, Kerp, et al.,
2004). In the radio and optical band jet radiation is usually polarized which was first discovered
in the jet of M87 by Baade (1956) and quickly lead to the conclusion of a synchrotron process
(Burbidge, 1956). Angel and Stockman (1980) later proposed that blazars are AGNs and agian
showed polarized emission in the optical and infrared region in those sources.

The lower-frequency hump of the double-hump spectrum is mainly accounted to synchrotron
emission while the high-frequency part of the spectrum is most often assumed to be caused by
inverse-Compton scattering. Apart from inverse-Compton scattering hadronic and nuclear processes
may be at work which indirectly lead to the emission of very high energetic photons and other
particles such as neutrinos (Mannheim, 1993).

Variability

The assumption of a single-blob emission model does not hold in practice as can be seen for
example at the fast variability of the radio emission polarisation angle. It shows that most likely
multiple emission regions with differenly oriented magnetic fields are at play (Agudo et al., 2018).
Violent variability in luminosity is also observed in some types of AGN such as BL Lac objects
and optically violent variable quasars. The timescales of the variability limit the extent of the
radiating regions to the corresponding light-travel distances, which is a hint at the existence of
local particle acceleration and radiation mechanisms. In this case energy is transported with the
bulk motion until it reaches the region of radiation, where it is radiated away.

Variability is observed in all regions of the spectrum and correlation between different parts of
the spectrum can be observed (e.g. Sbarrato et al., 2012). The X-ray variability correlates with
the mass of the central black hole and the luminosity, with brighter and more massive sources
exhibiting less variability (Lanzuisi et al., 2014).

Emission processes

One possible radiation process is the free-free emission or bremsstrahlung which happens if particles
electrostatically scatter at each others potentials in a relatively dense plasma and therefore radiate
because of the experienced acceleration. Thermal bremsstrahlung is not expected to be a relevant
emission mechanism in jets because it would require densities that are in conflict with estimates,
although sometimes models could in principle be fitted to observed data (Schwartz et al., 2000). It
is also ruled out as the main driver of jet emission because it emits unpolarized radiation contrary
to observations.

Synchrotron emission forms one of the main parts of the spectrum and is observed universally
in jets, mainly in the radio band. Its popularity originates in its ability to explain the polarized
radiation and power laws observed over many orders of magnitude It is produced by relativistic,
charged particles that gyrate due to external magnetic fields and radiate because of their continued
acceleration on the orbit. If magnetic fields and particle energies are high enough, synchrotron
emission from electrons can be observed extending to the optical and even the X-ray band
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(Sambruna, Gambill, et al., 2004). Electrons are more efficient radiators of synchrotron radiation
than protons because of their lower mass and are therefore usually considered the source of the
observed radiation. Nevertheless, synchrotron radiation can naturally also be emitted by protons if
they are accelerated to very high energies > 1 · 1018 eV and are a possible explanation of X-ray
emission (Aharonian, 2002).

Synchrotron-emitted photons can rescatter with the population of electrons emitting synchrotron
radiation and therefore not escape the source region and reach the observer. This is called
synchrotron self-absorption and happens in optically thick conditions, i.e. if the mean free path of
reabsorption scattering is smaller than the source region. In this case the synchrotron spectrum is
no longer dependent on the electron momentum spectrum but has a constant spectral index of 5/2
(Rybicki and Lightman, 1986). In the optically thick region the electron population therefore also
loses less energy. Synchrotron self-absorption is observed in radio spectra as a break of the power
laws at the low-frequency end of the spectrum.

Synchrotron radiation, especially as an explanation for optical and X-ray emission, requires the
local acceleration of charged particles and excludes the possibility for radiating particles originating
in the core region. The lifetimes of particles decreases with increasing frequency as τ ∼ 1/

√
ν and

is on the order of a few hundred years in the optical band while emission is detected multiple kpc
from the core (Perlman, 2012). Another argument that even extends to radio sources is that for
electrons having high energies at the emission sites they must have had unrealistically high energies
at the nucleus if not accelerated near the emission site (Begelman, Blandford and Rees, 1984). In
contrast, Gopal-Krishna et al. (2001) show that plausible parameters can be found that explain
optical synchrotron emission in many sources without the need of local acceleration mechanisms.

Excess radiation in the optical and X-ray bands above extrapolated radio spectra is observed for
example in 3C 273 (Jester et al., 2002) among other sources and requires another contribution
to the radiation apart from synchrotron radiation. The additional contribution is assumed to be
inverse-Compton upscattering of some photon field which can also explain γ-ray emission. External
Compton scattering occurs if relativistic electrons scatter at photons, while in contrast to the
classical Compton scattering process, the electrons lose energy and photons with higher energy
are emitted. This can be attributed to a single electron population producing synchrotron and
inverse-Compton radiation which explains the spectra of multi-band observations (Dermer and
Atoyan, 2002), but multiple populations are also possible.

Inverse Compton scattering can occur with a variety of different photon fields that may be
present at the emission zone. First the accelerated particles can upscatter the synchrotron photons
produced by themselves which is called synchrotron self Compton (SSC) emission. It is considered
unlikely to be the only explanation of the observed X-ray luminosity (Finke, Dermer and Böttcher,
2008) and IC scattering at other targets must be taken into account. Scattering of the infrared
emission of hot dust heated by the emission from the accretion disk has also been proposed as
a source of X-ray emission (B lażejowski et al., 2000) as well as the direct comptonization of the
accretion disk’s radiation itself for radiation originating near the core. This was proposed by
Dermer and Schlickeiser (1993) who explain the emission of γ-rays among other spectral features
with electrons accelerated near the core upscattering accretion disk photons. Another popular
approach is to assume inverse-Compton scattering of the cosmic microwave background (CMB)
radiation. This is thought to dominate over SSC especially in high-redshifted sources since the
apparent density of the CMB photon field is boosted from the viewpoint of the relativistic plasma
and its energy density can exceed that of the magnetic field (Ghisellini, Celotti, et al., 2014). High
redshifts also suggest that emission occured when the universe was younger and the CMB radiation
was more intense.

Another mechanism is the photo-pair production which attenuates the emission in the γ-ray
range by the production of electron-positron pairs.
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Jet composition

The composition of the matter in the jet naturally influences the radiation emitted by the jet.
It is assumed that it consists of a collisionless plasma, which is an ionized gas where the free
charges influence its properties considerably. Since collisions are sparse (the collision length being
longer than the size of the system) the plasma has no means of relaxing to a thermal (Maxwellian)
distribution and therefore can be far from thermodynamic equilibrium. This is called non-thermal
plasma and is likely present in jets. The plasma must be quasi-neutral, that is the positive and
negative charges balance each other, because confinement as observed in jets would not be possible
in charged plasmas. For the magnetic field strength, estimates vary greatly, but limits can be
derived from the peak intensity of the synchrotron hump and the inverse-Compton luminosity. In
the jet of M87, it has been estimated to be at least 230 µG (Snios et al., 2019) while for other
sources estimates range from 0.007 to 612 G in different radiation models (Sambruna, Maraschi
and Urry, 1996).

There are two common models for the charges making up the plasma. The first is that of
a leptonic jet consisting of an electron-positron plasma and the second is a hadronic jet which
consists of protons and electrons. It is assumed that the composition depends on the mechanism of
jet launching as discussed in section 2.2.1. A model assuming that a mixed population of both
plasma types is present in the jet is proposed by Sol, Pelletier and Asseo (1989) and matches the
expectation that both launching mechanisms play a role. The leptonic plasma is expected to move
much faster than the hadronic plasma which could explain the detection of both superluminal and
subluminal motion in the same jet.

Hadronic contents in the jet are also probable as they can explain emission of x- and γ-ray
photons when protons are accelerated to very high energies (Mannheim, 1993). Protons are also
accelerated by diffusive shock acceleration and can interact with the synchrotron photons emitted
by relativistic electrons to trigger the production of energetic pions. These pions then decay
into pairs of photons which start a cascade of electron-positron pair production and synchrotron
emission (Mannheim, Krülls and Biermann, 1991).

2.2.4. Particle acceleration

As discussed above, the cooling times of the radiating particles are generally much shorter than
the light travel time from the core to the radiating lobes and knots. This requires the presence of
acceleration mechanisms at or near the hotspots of radiation (e.g. Romero, Böttcher, et al., 2017).
Some of those are summarized here and discussed in section 3.2. The most common mechanism
is first-order Fermi acceleration, also called diffusive shock acceleration. At a shock front, that
is a steep gradient in pressure, density and velocity of the bulk plasma, particles are accelerated
by crossing the shock many times while undergoing diffusive motion. If the acceleration region
is large enough and particles are scattered suffiently so that they are able to cross many times
before escaping, a substantial amount of energy can be gained. The gain of energy per crossing is
of first order in the shock’s velocity difference, hence the name. In an AGN jet, there are plasma
conditions, notably the highly relativistic bulk motion, that question the applicability of this
mechanism. Furthermore, diffusive shock acceleration is only efficient in re-accelerating particles
that already are much faster than the background medium. This is known as the injection problem
and details on diffusive shock acceleration are discussed in section 3.2.2.

Another mechanism that is possible at shock fronts is the shock drift acceleration, in which
particles cross the shock only a single time (Begelman and Kirk, 1990). In superluminal shocks (in
the sense that the intersection of field lines with the shock front travels superluminally), which
are expected in a plasma with highly relativstic bulk motion, the particle travels along electric
field gradients which accelerate it (Marcowith et al., 2016). The possible energy gain, however, is
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relatively limited, and is at maximum
γ1
γ2

=

√
B2

B1
(2.4)

where the ratio of magnetic field strengths is at maximum 4 when assuming the plasma is an ideal
gas (Kirk, 1994).

Without the need of a shock front, second-order Fermi acceleration takes place if particles
randomly scatter at so-called magnetic mirrors, that are most commonly assumed to be plasma
waves. In principle, the particles can equally gain or loose energy in those collisions, but Fermi
(1949) reasoned that head-on collisions in which particles gain energy are more likely to happen
than lossy collisions and therefore a net energy gain is achieved.
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3. Theoretical description of the jet
plasma

The description of plasmas is the starting point for describing the physics in the jets of AGN. A
plasma is a gas with substantial ionization of the atoms or molecules, which substantially changes
its characteristics. In a plasma consisting of a population of positive and negative charges the
particles mainly interact according to their collective Lorentz forces instead of their collisions. A
fundamental quantity of a plasma is the plasma frequency ωp

ωp =

√
4πe2n

m
(3.1)

which can be given for any particle species in the plasma with n as the (electron) density, m as
the (electron) mass and e the elementary charge, written in Gaussian units. It is the oscillation
frequency of a disturbance of charge density equilibrium, i.e. a infinitesimal charge separation and
gives the fundamental timescale of plasmas. The particles surrounding a test particle shield the
electrostatic forces of all other particles beyond a distance λD which is called the Debye length. It
is given by the distance a typical particle with thermal velocity of vt =

√
kBT/m travels during a

period of the plasma oscillations at a temperature T with the Boltzmann constant kB :

λD =
vt
ωp

=

√
kBT

4πne2
. (3.2)

Describing some medium as a plasma is reasonable if the size of the considered region is much
larger than this length. The number of particles in the Debye sphere is given by

Λ =
4πλ3

D

3
n (3.3)

and is called the plasma parameter. The collisions are dominated by the Coulomb interaction
of the particles and a collision frequency ν = vnσ is introduced. To estimate the collision cross
section σ one can estimate the distance of closest approach r by the distance where the average
kinetic and potential energies equal each other (Hasegawa, 1975):

Ekin =
m̄v2t

2
=

e2

r
= Epot ⇒ r =

2e2

m̄v2t
(3.4)

Therefore the collision frequency in the case of electron-electron collisions with the reduced mass
m̄ ≈ m and cross section σ = πr2 reads

ν =
4πne4

m2v3t
=

ωp

4πnλ3
D

=
ωp

3Λ
(3.5)

where the plasma frequency and the number of particles in the Debye sphere can be identified.
For the shielding of electromagnetic forces to be effective, many particles have to be in the Debye
sphere, i.e. Λ ≫ 1. In this case of the so-called weakly coupled plasma ν ≪ ωp collisions occur
rarely in comparison to the timescale of the plasma oscillations and therefore can barely influence
the latter. Based on the same argument it also follows that the mean free path λmfp = vt/ν is much
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3. Theoretical description of the jet plasma

larger than the Debye sphere so collisions play a minor role in those plasmas. For this reason they
are also called collisionless especially compared to neutral gases where collisions play a significant
role. Collisionless plasmas are typically relatively hot and tenuous since Λ ∝

√
T 3/n and are an

appropriate description for most plasmas that can be found in space (Fitzpatrick, 2014) and likely
also in AGN jets.

While in neutral gases collisions between molecules quickly establish thermodynamic equilibrium,
i.e. the particles’ velocities are always distributed closely to the thermal Maxwell-Boltzmann-
distribution, the weak particle interactions in plasmas allow the plasma to be driven far from
thermal equilibrium. It must be noted that this is only an approximation because since the
Coulomb interaction is long-ranged particles are also scattered when crossing much farther away
than r, although by a smaller magnitude. Fitzpatrick (2014) shows that a correction of order ln Λ
must be introduced but this does not conflict with the general argument.

3.1. Kinetic plasma physics

3.1.1. Vlasov equations

To describe the evolution from a known initial state of a plasma one starts from the exact
distribution function f(x⃗, p⃗, t) in phase space (x⃗, p⃗). The distribution function must be conserved
in phase space, i.e.

df

dt
=

∂f

∂t
+
∑
i

∂f

∂xi

dxi

dt
+
∑
i

∂f

∂pi

dpi
dt

= 0 . (3.6)

The distribution function is essentially a sum of δ-distributions, one for each particle, and leads
to a many-body problem which is not solvable for a realistic number of particles. (Hazeltine and
Waelbroeck, 2004) To overcome this problem an ensemble average f̄ = ⟨f⟩ is taken. Because of the
coupling of the electromagnetic field to the exact particle trajectories the force dp/dt is correlated
with f and when averaging this term in equation (3.6) a correlation term C(f) has to be introduced
(Hazeltine and Waelbroeck, 2004):〈

dpi
dt

∂f

∂pi

〉
=

〈
dpi
dt

〉
∂f̄

∂pi
− Ci(f̄) . (3.7)

The correlation term is dominated by close interactions of particles and is therefore also called
collision operator. Taking the ensemble average of equation (3.6) and identifying the velocity
vi = dxi/dt and the force Fi = dpi/dt leads to the Boltzmann equation which reads

∂f̄

∂t
+
∑
i

vi
∂f̄

∂xi
+
∑
i

Fi
∂f̄

∂pi
=
∑
i

Ci(f̄) (3.8)

The averaged distribution function f̄(x⃗, p⃗, t) now gives the probability density for finding a particle
at the given phase space point and time. Vlasov (1968) started from this equation and proposed
two ideas when applying the Boltzmann equation to a weakly coupled plasma:

• The force term is expressed by the Lorentz force caused by an electromagnetic field E⃗, B⃗
that itself is determined by Maxwell’s equations. Those depend on the charge and current
densities which can be given in terms of the distribution function f̄ .

• The collision term is set to zero since in the case of a weakly coupled plasma the Coulomb
interactions become negligible. This is equivalent to assuming that the particle trajectories
are not correlated as described above and corresponds to the collisionless approximation.
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Replacing f̄ with f for simplicity one arrives at a system of coupled equations that is commonly
known as the Vlasov equations, where the kinetic equation (3.9) is known as the Vlasov equation
which reads

∂f

∂t
+ v⃗ ∇f − e(E⃗ +

1

c
v⃗ × B⃗)∇pf = S (3.9)

ρ = −e

∫
fd3p (3.10)

j⃗ = −e

∫
v⃗fd3p (3.11)

∇ · E⃗ = 4πρ

∇ · B⃗ = 0

∇× E⃗ = −1

c

∂B⃗

∂t

∇× B⃗ =
1

c

(
4πj⃗ +

∂E⃗

∂t

) (3.12)

introducing a particle source and sink term S. The above and especially the equations (3.9) to (3.11)
are given for electrons but hold for each species of particles separately and charge and current
densities j⃗, ρ have to be summed up replacing e by the respective charges. The Vlasov equations
also hold in the relativistic case when using the relativistic momentum p = γmv (Schlickeiser,
2002).

The coupling of this system of equations can be partially resolved in two fundamental ways.
On the one hand the test-particle approach can be used where the fields E⃗, B⃗ are assumed to be
given and the propagation of the test particles described by f is studied. On the other hand there
is the test-field approach which prescribes the particle distribution f and solves for the resulting
fields E⃗, B⃗. Both of these are limits where parts of the physical coupling of fields and particles
are ignored and therefore are only valid if the influence of one component on the other can be
neglected.

3.1.2. Quasilinear approximation

One major assumption for arriving at a transport equation for test particles in plasma is that
the electromagnetic fields deviate from some given field by only small turbulences. Since the
plasma is assumed to be collisionless its conductivity is nearly infinite. Electric fields are therefore
short-circuited so there will be no macroscopic electric fields. Without loss of generality the
magnetic field can be chosen to align with the z-axis and the fields can therefore be written as

B⃗ = B0ẑ + δB⃗, E⃗ = δE⃗ (3.13)

where δE⃗, δB⃗ denote the turbulent deviations. Every particle will then perform a gyroscopic
trajectory in the magnetic field with a gyroradius of

rg =
p⊥

|q|B0
(3.14)

and a gyrofrequency

ωg =
|q|B0

m
. (3.15)

Particles therefore move in helical orbits and it is useful to introduce a set of coordinates that
separates the gyroscopic motion from the motion of the gyrorotation centers (Schlickeiser, 2002):

x⃗′ = x⃗ +
p⃗× ẑ

ϵmωg
(3.16)
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where ϵ = |q|/q. It is helpful to use spherical coordinates for the momentum space which are

p⃗′ = p


cosϕ

√
1 − µ2

sinϕ
√

1 − µ2

µ

 (3.17)

where ϕ is the gyrophase and µ = cos θ is the pitch-angle, i.e. the angle between the momentum
and the magnetic field direction. The spatial coordinates then read

x′ = x + sinϕ
p
√

1 − µ2

ϵmωg
, y′ = y − cosϕ

p
√

1 − µ2

ϵmωg
, z′ = z . (3.18)

Transforming the Vlasov equation (3.9) into this coordinate set leads to (Achatz, Steinacker and
Schlickeiser, 1991)

∂f

∂t
+ G(f) +

1

p2
∂

∂xα

(
p2gαf

)
= S(x⃗, p⃗, t) (3.19)

with G(f) giving the influence of the unperturbed field

G(f) = vµ
∂f

∂z′
− ϵωp

∂f

∂ϕ
(3.20)

and the effect of the field fluctuations are seperated into a set of generalized forces gα. A single
stochastic particle orbit which results from a specific history of the fluctuating fields is not of
particular interest; instead one considers, again, an ensemble average which this time runs over
phase space trajectories of f for a set of random fluctuations. The ensemble average of the
fluctuations is zero, i.e. ⟨δB⟩ = ⟨δE⟩ = 0 and one is interested in an equation for F = ⟨f⟩

∂F

∂t
+ G(F ) +

1

p2
∂

∂xα

(
p2gαδf

)
= S(x⃗, p⃗, t) (3.21)

where δf = f−F and the usual summation convention over identical indices is implied. Subtracting
the averaged equation (3.21) from equation (3.19) gives an equation in terms of the fluctuations

∂δf

∂t
+ G(δf) + gα

∂F

∂xα
+ gα

∂δf

∂xα
−
〈
gα

∂δf

∂xα

〉
= 0 . (3.22)

If the timescale tg of the effects of the fluctuating forces gα is long in comparison to the observed
timescale the last two terms can be neglected in comparison to the other terms. Achatz, Steinacker
and Schlickeiser (1991) solve this equation for δf using the method of characteristics and arrive at

δf(t) = δf(t0) −
∫ t

t0

dt′gα
∂F

∂xα
(3.23)

where the integrand has to be evaluated along the unperturbed orbits of the particle, i.e. only the
contribution of G(F ) to the propagation. It is neccessary to assume that at the time t0 the particle
fluctuations are completely uncorrelated to the turbulences. Then, plugging equation (3.23) into
equation (3.19) only the integral term remains and one arrives at

∂f

∂t
+ G(f) +

1

p2
∂

∂xα

(
p2
∫ t

t0

dt′ ⟨gα(t)gβ(t′)⟩ ∂F (t′)

∂xβ

)
= S(x⃗, p⃗, t) . (3.24)

If there is a correlation time tc beyond which the fluctuations gα and gβ are uncorrelated the lower
limit of integration can be replaced by 0 since there are no contributions to the integral’s value

15



3. Theoretical description of the jet plasma

before t − tc. Assuming that the variations in ∂F/∂xβ are small during the time in which the
fluctuations are correlated the equation reduces to a diffusion equation when pulling ∂F/∂xβ out
of the integral. This is the result of the quasilinear approximation.

∂F

∂t
+ vµ

∂F

∂z′
− ϵωp

∂F

∂ϕ
− 1

p2
∂

∂xα

(
p2Dαβ

∂F

∂xβ

)
= S(x⃗, p⃗, t) (3.25)

where Dαβ are the Fokker-Planck coefficients which represent the turbulent properties of the
plasma and are given by the correlation functions of the generalized forces gα integrated along
unperturbed orbits:

Dαβ =

∫ t

0

dt′⟨gα(t)gβ(t′)⟩ (3.26)

These coefficients are lengthy to calculate and resulting equations cannot be solved analytically in
most cases so one naturally searches for ways to avoid calculating some of them. One possibility is
the diffusion approximation described in the next section.

The quasilinear approximation naturally only holds for small deviations from some given large-
scale electromagnetic fields. In AGN jets a significant portion of the energy of the plasma bulk
is assumed to accelerate high-energy particles whose high-intensity radiation can be observed on
Earth. This of course breaks the assumptions of the pertubation method since the plasma properties
(like magnetic fields) itself will be influenced by the particles and challenges the applicability of the
test-particle regime.

3.1.3. Diffusion approximation

Most of the diffusion terms of the Fokker-Planck equation (3.25) are of the order of vA/v, rg/r or of
second order of these terms where vA is the plasma wave speed and r the length scale of variations
of F while only Dµµ, Dµϕ, Dϕµ and Dϕϕ are of lower order (Schlickeiser, 2002). Assuming that
the gyroradius rg is much smaller than the observed length scales r and the particles have a
velocity v that is much faster than the wave phase speed vA diffusion of pitch- and gyrophase angle
are the fastest processes in the system. In other words the time and length scales on which the
density varies must be large compared to the pitch angle relaxation time τ and the typical distance
travelled in this time vτ respectively so that particles can reach the isotropic local equilibrium. In
this case the particle distribution can be assumed to stay close to isotropy at the timescales one is
interested in and the anisotropic part of the distribution can be split off:

F =
1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ F︸ ︷︷ ︸
Isotropic partFi

+F − 1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ F︸ ︷︷ ︸
Anisotropic partFa

= Fi(x⃗, p, t) + Fa(x⃗, p, µ, ϕ, t) (3.27)

where
1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ Fa = 0 . (3.28)

and in the diffusion approximation Fa ≪ Fi. Taking the average in ϕ and µ of equation (3.25)
leads to

S =
∂Fi

∂t
+

v

4π

∂

∂z′

∫ 2π

0

dϕ

∫ 1

−1

dµ µFa

−
∑

α,β=x′,y′,p

1

4πp2
∂

∂xα
p2

∂Fi

∂xβ

∫ 2π

0

dϕ

∫ 1

−1

dµ Dαβ

−
∑

α=x′,y′,p
β ̸=z′,ϕ

1

4πp2
∂

∂xα
p2
∫ 2π

0

dϕ

∫ 1

−1

dµ Dαβ
∂Fa

∂xβ

(3.29)
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Details of this calculation are shown in appendix A. To achieve the goal of a transport equation only
depending on the isotropic part of the density Fi we subtract this equation from the unaveraged
equation (3.25) giving an expression relating the anisotropic part Fa to the isotropic part Fi

(Schlickeiser, 2002):(
ϵωp +

∂Dµϕ

∂µ

)
∂Fa

∂ϕ
+

∂

∂ϕ

(
Dϕϕ

∂Fa

∂ϕ

)
+

∂

∂µ

(
Dµµ

∂Fa

∂µ

)
= vµ

∂Fi

∂z′
− ∂Dµp

∂µ

∂Fi

∂p
−
∑
α,β

∂Dαβ

∂xα

∂Fi

∂xβ

with α ∈ {µ, ϕ}, β ∈ {x′, y′}

(3.30)

The anisotropic part can be expressed as a Fourier series in gyrophase ϕ with coefficients F k
a that

of course are not dependent of ϕ:

Fa =
∑
k

F k
a eıkϕ (3.31)

Terms with |k| > 1 will drop out in the gyrophase averaging and k = 1 is of second order in
(δB/B0)2. One arrives at the following equation (Schlickeiser, 2002)

∂

∂µ

(
Dµµ

∂Fa

∂µ
+ Dµp

∂Fi

∂p

)
= vµ

∂Fi

∂z′
(3.32)

which can be integrated to obtain an expression for ∂µFa and therefore for term
∫ 1

−1
dµDµp∂µFa

in equation (3.29):
∂Fa

∂µ
= −1 − µ2

2Dµµ
v
∂Fi

∂z′
− Dµp

Dµµ

∂Fi

∂p
(3.33)

where the constant of integration is −v∂z′Fi/2 since Dµα(µ = ±1) = 0 because there is no pitch-
angle scattering when the particle moves parallel to the magnetic field. Integrating again over µ
leaves us with an expression for the anisotropy in terms of the isotropic distribution:

Fa = C − v

2

∂Fi

∂z′

∫ µ

−1

dµ′ 1 − µ′2

Dµµ
− ∂Fi

∂p

∫ µ

−1

dµ′Dµp

Dµµ
(3.34)

The anisotropy therefore arises from spatial and momentum gradients in the isotropic distribution.
This equation can be used to find an expression for the second term in equation (3.29) in terms of
Fi:

v

4π

∂

∂z′

∫ 2π

0

dϕ

∫ 1

−1

dµ µFa = −v

4

∂Fi

∂z′

∫ 1

−1

dµ

(
1 − µ2

)2
Dµµ

− 1

2

∂Fi

∂p

∫ 1

−1

dµ
(
1 − µ2

) Dµp

Dµµ
(3.35)

The integrals have been partially integrated similar to∫ 1

−1

dµµ

∫ µ

−1

dµ′F(µ′) =

[
µ2

2

∫ µ

−1

dµ′F(µ′)

]µ=1

µ=−1

−
∫ 1

−1

dµ
µ2

2
F(µ) =

1

2

∫ 1

−1

dµ
(
1 − µ2

)
F(µ)

(3.36)

and the integration constant (being independent of µ) vanishes because
∫ 1

−1
dµµ = 0. With

equation (3.33) one can also evaluate the term∫ 1

−1

dµDpµ
∂Fa

∂µ
= −v

2

∂Fi

∂z′

∫ 1

−1

dµ
(
1 − µ2

) Dµp

Dµµ
− ∂Fi

∂p

∫ 1

−1

dµ
D2

µp

Dµµ
(3.37)
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3. Theoretical description of the jet plasma

using Dpµ = Dµp. One can now write down the diffusion-convection equation for the isotropic part
of the density by plugging in equations (3.35) and (3.37) into equation (3.29) and reordering the
terms.

∂Fi

∂t
=

∂

∂z

(
v2

8

∫ 1

−1

dµ

(
1 − µ2

)2
Dµµ︸ ︷︷ ︸

κzz

∂Fi

∂z

)
+

∑
i,j∈{x′,y′}

∂

∂xi

(
1

2

∫ 1

−1

dµDij︸ ︷︷ ︸
κij

∂Fi

∂xj

)

− 1

p2
∂

∂p

(
p2

v

4

∫ 1

−1

dµ
(
1 − µ2

) Dµp

Dµµ︸ ︷︷ ︸
a1

)
∂Fi

∂z
+

∂

∂z

(
v

4

∫ 1

−1

dµ
(
1 − µ2

) Dµp

Dµµ︸ ︷︷ ︸
a1

)
∂Fi

∂p

+
1

p2
∂

∂p

(
p2

1

2

∫ 1

−1

dµ

(
Dpp −

D2
µp

Dµµ

)
︸ ︷︷ ︸

a2

∂Fi

∂p

)
+ S

(3.38)

The remaining Fokker-Planck coefficients are Dpp giving momentum change through fluctuating
electric fields and Dµµ for pitch-angle scattering. In this equation 7 transport parameters can be
identified that are given in terms of pitch-angle averages of Dαβ . Dµp arises from correlations
between magnetic and electric field turbulence. The coefficients κij are the components of the spatial
diffusion coefficient and the momentum diffusion is parametrized by a1, a2. When considering Alfvén
waves propagating parallel to the magnetic field and the damping of the waves can be considered
small the diffusion coefficients for perpendicular directions Dx′x′ = Dy′y′ = Dx′y′ = Dy′x′ = 0 and
therefore κij = 0 except for κzz (Schlickeiser, 2002). They are therefore neglected in the further
discussion.

To consider a moving background plasma it is useful to write the transport equation in a mixed
comoving coordinate system in which the spatial part is measured in the laboratory frame and the
particle’s momentum is measured in the rest frame of the plasma’s bulk motion. Kirk, Schlickeiser
and Schneider (1988) give an expression of equation (3.38) transformed to this coordinate system
using a Lorentz transform. In the limit of nonrelativistic background plasma velocities it reads
with κ = κzz and renaming z := z′

∂F

∂t
= − u

∂F

∂z
+

∂

∂z

(
κ
∂F

∂z

)
− 1

p2
∂
(
p2a1

)
∂p

∂F

∂z

+

(
p

3

du

dz
+

∂a1
∂z

)
∂F

∂p
+

1

p2
∂

∂p

(
p2a2

∂F

∂p

)
+ S

(3.39)

where p is now to be read as comoving with the plasma bulk motion parametrized as u(z). The
effect of processes leading to energy losses ṗ can be included into this equation by adding additional
terms of the form

1

p2
∂

∂p

(
p2ṗF

)
(3.40)

Equation (3.39) is the basic equation used in the rest of this work.

3.1.4. Plasma waves

Alfvén waves are a wave of oscillating ions in the plasma in response to the magnetic field line
tension. The group velocity of an Alfvén wave is the Alfvén velocity that is given by

vA =
B0√

4πne(mp + me)
(3.41)

The gyroresonant instability (proposed by Kulsrud and Pearce, 1969) enables particles in the
plasma to excite Alfvén waves which in turn are able to pitch-angle scatter the particles. The
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3. Theoretical description of the jet plasma

Alfvén waves are excited by anisotropies in the distribution function which arise from particles
travelling along the magnetic field lines of force (Thomas and Pfrommer, 2019).

3.2. Particle acceleration mechanisms

As discussed in section 2.2.4 the radiation observed from jets seemingly requires acceleration of
particles in situ because the lifetime of particles accelerated close to the core is much smaller than
the light travel time from the core to the outer regions of the jet, where radiation is observed
(Perlman, 2012). Many popular mechanisms used for explaining the acceleration up to extremely
relativistic energies assume the presence of a shock.

3.2.1. Acceleration mechanisms at shocks

It is assumed that shock fronts in the plasma play a central role in the acceleration of electrons. A
shock is essentially a sudden change in pressure and velocity of the plasma bulk medium where
a faster travelling part of the plasma hits a slower one. Astrophysical plasmas and therefore the
shocks can be considered collisionless because of the long mean free path of Coulomb collisions
as opposed to the observed lengthscales. While particle-particle interactions are therefore not
significant, wave-particle interactions are and plasma waves scattering particles are of central
importance for the acceleration mechanisms. Possible mechanisms for acceleration are discussed in
this chapter.

3.2.2. Diffusive shock acceleration

Diffusive shock acceleration, also known as first-order Fermi acceleration, happens when particles
are able to cross the shock front multiple times due to diffusion and gain energy at each crossing.
Consider a shock perpendicular to the z-axis with bulk velocities u1 and u2 for upstream (1) and
downstream (2) respectively. If a particle with pitch-angle µ and momentum p crosses the shock
front its momentum is not inherenrly changed (before any scattering occurs) but since in the mixed
comoving coordinates used the particle’s momentum is measured in the bulk plasma rest frame
and the value of the momentum changes. We can use a Lorentz boost to find the particles energy
and momentum after crossing the front. The momentum component parallel to the shock normal
is denoted by p∥ = µp and the Lorentz factor of the boost is γ = 1/

√
1 − β2 with β = (u1 − u2)/c.

The transformation for a crossing in downstream direction (from upstream to downstream) then
reads

Λd

E/c

p∥

 =

 γ γβ

γβ γ

E/c

p∥

 γ∼1
≈

1 β

β 1

E/c

p∥

 (3.42)

and the inverse transformation holds for travelling in upstream direction

Λu

E/c

p∥

 =

 γ −γβ

−γβ γ

E/c

p∥

 γ∼1
≈

 1 −β

−β 1

E/c

p∥

 (3.43)

The energy gains of the particle can now be determined by applying both of those transformations
and incorporating the fact that the particle’s momentum is scattered back in the direction of the
shock front between crossings. For a particle travelling downstream this results inEd/c

p∥,d

 = Λd

Eu/c

p∥,u

 =

Eu/c + βp∥

βEu/c + p∥

 (3.44)
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where downstream quantities are denoted by an index d and upstream quantities by an index u.
Therefore the energy gain ratio of the particle crossing u → d is

ϵu→d =
∆Eu→d

E
=

cβp∥

cp
= βµ (3.45)

This value has to be averaged over all possible pitch angles 1 > µ > −uu/v ≈ −uu/c ≈ 0 assuming
highly relativistic particles with v ∼ c and a non-relativistic bulk velocity. The probability for a
particle with some µ crossing the shock without being scattered on its way is inversely proportional
to the time t spent in the scattering medium if pitch-angle scattering happens with some collision
frequency νc:

Pc ∝
1

t
=

v + uu/µ

d
=

vµ + uu

d∥
∝ vµ + uu (3.46)

where d is the distance from the particle’s position to the shock in the direction of its motion. The
last proportionality holds because particles are equally likely to be at any distance from the shock.
The average energy gain ratio weighted by this probability then reads, again assuming v ∼ c and
neglecting terms of order β2 and higher:

ϵ̄u→d =

∫ 1

0

dµPc(µ)ϵu→d

/∫ 1

0

dµPc(µ) =

∫ 1

0

dµ(vµ + uu)ϵu→d

/∫ 1

0

dµ(vµ + uu) ≈ 2

3
β . (3.47)

Similar calculations also hold for the traversal back to the upstream medium after the particle has
been scattered in pitch angle to a value −1 < µ ≲ 0. Here the fundamental assumption is made
that the particle distribution is always isotropic on both sides of the shock so that every pitch angle
is equally likely. The pitch angle scattering coefficient Dµµ therefore has to be the most significant
effect for the diffusion approximation to apply. Using the inverse transformation Λu leads similarly
to ϵd→u = −βµ only with the opposite sign. Integrating over µ over the inverse integration range
leads to the same result of ϵ̄d→u = 2/3β and therefore the total energy gain ratio per cycle is

ϵu→u =
E′

u − Eu

Eu
=

Eu (1 + ϵu→d) (1 + ϵd→u) − Eu

Eu
≈ ϵu→d + ϵd→u (3.48)

up to the first order in β. The µ-integrated energy gain ratios therefore also sum up and one
arrives at

ϵu→u =
4

3
β (3.49)

for a full cycle of the particle. The energy gain is of first order which gave this mechanism the
commonly known name first-order Fermi acceleration.

After the particle has crossed the shock N full cycles its momentum is

p(N) = p0 (1 + ϵ̄u→u)
N

(3.50)

but there is an nonzero probability Pe that the particle escapes the acceleration region. This
probability is given by the ratio of particle flux in upstream and downstream direction for particles
in the downstream medium (Jones, 1994). The downstream particle flux is

F→d =

∫ 1

−ud/v

dµPc(µ)

/∫ 1

−1

dµ =
(ud + v)

2

4v
(3.51)

and the upstream particle flux is

F→u =

∫ −ud/v

−1

dµPc(µ)

/∫ 1

−1

dµ =
(ud − v)

2

4v
. (3.52)
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The escape probabily for one cycle is therefore up to first order in ud/v for fast accelerated particles

Pe = 1 − F→u

F→d
= 4

ud

v
≈ 4

ud

c
. (3.53)

Since the per-cycle momentum gain ratio as well as the per-cycle escape probability is independent
from the particle momentum and therefore the same in each cycle a power-law spectrum of particles
arises. To show this one is interested in finding an expression for the probability f of finding a
particle after N cycles depending on the momentum gain after those N cycles. Such an expression
is found when considering the following (Jones, 1994):

q := − logP (N)

log (p(N)/p0)
= − log (1 − Pe)

N

log (1 + ϵ̄u→u)N
≈ Pe

ϵ̄u→u
= −3

ud

uu − ud
(3.54)

which is a constant in momentum. The count of cycles N cancels in this equation because the
relative gains and losses are the same for each cycle. The probability of finding a particle with
momentum < p is therefore given by

P (p) =

(
p

p0

)q

(3.55)

where q can also be given in terms of the compression ratio r = uu/ud:

q = − 3

r − 1
(3.56)

To stay consistent with the use of the probability density one can write

f(p) =
dP

dp
=

(
p

p0

)s

(3.57)

with a modified power-law index of

s := q − 1 = −r + 2

r − 1
. (3.58)

The same results can also be derived by solving the Fokker-Planck equation for pitch-angle
diffusion only at two sides of the shock (for example Bell, 1978; Kirk, 1994). Since the energy gain
of the first-order Fermi process is proportional to u/c and the acceleration timescale τa is short it
is expected to be efficient. The acceleration timescale is given by (Bednarz and Ostrowski, 1996)

τa =
3

uu − ud

(
κu

uu
+

κd

ud

)
. (3.59)

Therefore is a popular candidate for the mechanism of high-energy acceleration in a jet. This
process is believed to be very efficient in converting a significant portion of the energy of the plasma
into the cosmic rays (Drury, Markiewicz and Voelk, 1989). The accelerated cosmic rays are also
able to induce plasma instabilities and therefore plasma waves which in turn scatter the cosmic
rays themselves and increase the probability of re-crossing the shock front to gain more energy
(Bykov et al., 2013). This self-consistent creation of turbulence has successfully been simulated
using particle-in-cell simulations (Crumley et al., 2019).

The diffusion approximation used in the derivation of diffusive shock acceleration only holds if
the plamsa bulk speed is non-relativistic, i.e. if u ≪ c. In contrast observations of AGN jets make
it seem likely that highly relativistic bulk motion of the plasma is common (Biretta, Zhou and
Owen, 1995) which leads to some difficulties in describing the acceleration mechanisms. In the
relativistic case the pitch-angle scattering cannot neccessarily isotropize the particle distribution on
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short enough timescales that the distribution can be assumed to always stay near the equilibrium
(Kirk, 1994). Therefore and because the particle’s velocity is now comparable to the bulk velocity
particles may not be able to cross the shock multiple times which is essential for diffusive shock
acceleration. On top of that oblique and highly relativistic shocks are in many cases superluminal
in the sense that the magnetic field lines travel along the shock front with velocities > c (Begelman
and Kirk, 1990). Since unscattered particle trajectories follow the magnetic field lines strong
scattering across magnetic field lines must be prevalent for diffusive shock acceleration to work in
this environment (Kirk, 1994). On the other hand Achterberg, Gallant, et al. (2001) show that
for ultrarelativistic shocks these differences lead to a slight steepening in the resulting power laws
and Fraix-Burnet (1990) show that in the oblique case Fermi acceleration works as long as the
orientation of the magnetic field fulfills certain conditions.

Another problem with diffusive shock acceleration is that it is only effective for highly non-
thermal particles and the source of these is unkown. If the gyroradii of the particles is small,
the shock transition region is not infinitely small on the scales the particle travels and it cannot
gain energy in transitioning it (Balogh and Treumann, 2013). This is known as the injection
problem and many ideas for the injection of suprathermal particles have been proposed. Many find
their origin in the interaction with plasma waves and instabilities (Matthews, Bell and Blundell,
2020) but magnetic reconnection events where magnetic field lines reconnect are also discussed as
injection sources or as a direct acceleration mechanism Kagan et al., 2015. Another candidate for
highly relativistic flows is shock drift acceleration which is able to accelerate electrons to significant
non-thermal energies (Marcowith et al., 2016).

3.2.3. Second-order Fermi acceleration

Second-order Fermi acceleration, also called stochastic acceleration, occurs in turbulent plasma
conditions when particles undergo scattering in every direction. It was proposed by Fermi (1949)
who assumed randomly moving “magnetic mirrors” with a typical velocity u scattering the particles.
Today the random mirros are usually assumed to be plasma (i.e. magnetohydrodynamic) waves.
Each scattering event increases or decreases the particle’s momentum but head-on collisions
increasing momentum are more probable so there is a net gain in momentum. Following Longair
(2011) one finds that the energy gain of a particle with velocity v in one collision is to second order
in β = u/c

∆E

E
= 2β cos θ

v

c
+ 2β2 (3.60)

with the incident angle θ. Assuming relativistic particles, i.e. v → c the probability of a collsion is
proportional to 1 + β cos θ and averaging over θ in similar fashion as in equation (3.47) then gives〈

∆E

E

〉
= 2β + 2β

∫ π

0

d cos θ (1 + β cos θ) cos θ

/∫ π

0

d cos θ (1 + β cos θ) =
8

3
β2 . (3.61)

This process is happening slower compared to diffusive shock acceleration and is described by the
momentum diffusion coefficient κpp in equation (3.39). With the mean free path between collision
L the acceleration timescale τa can be defined as

τa =
3

4

L

cβ2
(3.62)

and with the escape timescale τe the equilibrium state of the mechanism has an energy distribution
(Blandford and Eichler, 1987)

∂N

∂E
∝ E−1−τa/τe . (3.63)

To explain the relatively narrow range of observed power-law indices with second-order Fermi
acceleration it, unrealistically, has to be assumed that very similar plasma conditions are prevalent
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over a broad range of sources. Therefore it is unlikely that it is the only reason for particle
acceleration. The stochastic nature of second order Fermi acceleration can be described in terms
of a diffusion process in momentum space by incorporating a momentum diffusion term into the
Fokker-Planck equation (3.39) by (Blandford and Eichler, 1987):

a2 =
⟨V 2⟩
3vL

(3.64)

While this mechanism is relatively inefficient in general and works efficient only under strong
assumptions it is proposed as “pre-heating” mechanism for particles in the downstream region
of a shock (Petrosian, 2012). After they gained enough energy to cross the shock front they can
participate in more efficient shock acceleration mechanisms, which may solve the injection problem.
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4. Stochastic differential equations

To solve the diffusion-convection equation (3.39) numerical methods are widely used. Since the
equation is of Fokker-Planck type its solution is apart from describing the physical particle density
also the probability density of some random process being the solution of a stochastic differential
equation. This equivalency can be exploited and the stochastic differential equation can be solved
which is a relatively straightforward task and has numerical advantages. In this section some basics
of probability theory are established that will lead to the formal equivalence of the stochastic
differential equation’s solution and the solution of Fokker-Planck-type equations.

Every time a random experiment is executed exactly one of several outcomes ω is produced. The
set of possible outcomes of a random experiment is called the sample space Ω = {ω}. Probably the
most famous example of randomness is the roll of a dice. In this case, the sample space consists of
the six possible numbers that the dice can show: Ω = {ω1, . . . , ω6}. If we run the experiment N
times and track the frequency of each outcome Nω we can define a probability pω = Nω/N in the
limit of infinitely many repetitions, i.e. N → ∞. This interpretation of probability is called the
frequentist interpretation since it is based on the concept of frequency. It stands in contrast to the
Bayesian interpretation of probability which relates the concepts of information or knowledge to the
probability assigned to an event. To define stochastic differential equations the first interpretation
is the most sensible and will be used.

A probability space is a triplet (Ω,A, P ) with the sample space Ω that has already been defined.
A is the set of events, an event being in itself a set if outcomes. Obviously the elements Ai

of A are subsets of the sample space Ω. Ω itself and the empty set ∅ can be events where the
first always occurs and the latter never. The last item in the triplet is the probability function
P (ω) : Ω → [0, 1], P (ω) = pω which assigns each possible outcome the respective probability as
introduced above. In the following section random variables and stochastic processes are introduced,
leading to the definition of stochastic differential equations and the Itô integral.

4.1. Random variables

To connect possible observable outcomes ω ∈ Ω to quantities we define the random variable
X : Ω → R assigning a real value to every ω. The probability for a random variable X taking
a value in some Borel subset B of R is PX(B) = P ({ω ∈ Ω : X(ω) ∈ B}) with the event
{ω ∈ Ω : X(ω) ∈ B} ∈ A. A Borel subset is any interval of the form (a, b), (−∞, a) or (a,∞)
with a, b ∈ R. Any complement, union or intersection of a finite or countable number of such
intervals is also a Borel subset of R. This definition gives rise to a cumulative probability density
FX(a) = PX((−∞, a]) being a function FX : R → R. The random variable and its probability
function PX form a new probability space (R,B, PX) with Ω = R and the set of events being the
σ-algebra B = {B}.

It is instructive to differentiate between two types of random variables. A disrecete random
variable is a random variable which takes a discrete set of values xi ∈ R. For those a probability
PX(X = xi) = p(xi) = pi can be defined since for every xi a Borel subset B ∈ B containing only
xi can be found. This probability may be nonzero for some or all xi. In contrast for a continuous
random variable the probability hitting exactly xi is PX(X = xi) = 0 for every xi since there are
infinitely many possible outcomes for X. Despite the probability being zero it is not in principle
impossible to hit a specified value xi exactly so we say such an event happens almost never. In
spite of this for continuous random variables it is possible to define a probability density function
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(p.d.f.) which is defined in terms of the differential of FX as p(x)dx = dFX(x). To retrieve the
probability of finding the random variable X inside the Borel subset B we integrate the probability
density:

PX(B) =

∫
B

dx p(x) (4.1)

Moments

Many interesting properties of random variables can be quantified by using the notion of moments.
Moments can be understood as an abstraction of the concept of an average of a function. The n-th
moment, centered around c of a function f(x) is given by

µn =

∫
dx(x− c)nf(x) (4.2)

If not stated otherwise, c = 0 is assumed. In physics moments are often used to describe properties
of densities (for example mass or charge density) in space, i.e. ρ(r), r ∈ R3. For example, the
zero-th moment of the mass density is obviously the total mass, the first moment of the mass
density is proportional to the center of mass and the second moment is the rotational intertia
(when rotating around the center point c). Similarly for a charge density, the first moment is the
electric dipole moment. These examples make it clear that moments carry information about the
shape of a distribution.

This concept can also be readily applied to a probability density function p(x) of a random
variable X. In this case, the first moment directly gives the expectation value E(X) = ⟨X⟩ of the
random variable which can be interpreted as the value that we expect to see after evaluating the
random variable for many (N → ∞) outcomes and averaging the random variable’s values. The
second moment, centered around the expectation value (c = E(X)), gives the variance Var(X)
of the random variable. It is a measure for how much, on average, the values of X deviate from
the expectation value. Higher moments (also centered around the expectation value) are called
skewness and kurtosis but will not be further explored here.

4.2. Stochastic processes

A stochastic process {Xt} is commonly known as a set of random variables Xt indexed by a variable
t ∈ T all defined on the same probability space (Ω,A, P ). Most of the times t is interpreted as a
time variable so that Xt represents the time evolution of a quantity. Depending on the choice of T
we differentiate discrete time and continous time stochastic processes. The stochastic process can
be written as a function X(t, ω) : T × Ω → R where different X(ω) are called different realisations
or sample paths of the stochastic process. The joint distributions of the stochastic process
Ft0,...,tn(x0, . . . , xn) : Rn → R give the probability of a subset of random variables Xt0 . . . Xtn at
increasing time instants t0 < t1 < · · · < tn each evaluating to the corresponding x0, . . . , xn, i.e. a
particular sample path. When analysing stochastic processes it is useful to look at the conditional
probability

P (Xn = xn|X1 = x1, X2 = x2, . . . , Xn−1 = xn−1) =
P (X1 = x1, X2 = x2, . . . , Xn = xn)

P (X1 = x1, X2 = x2, . . . , Xn−1 = xn−1)
(4.3)

denoting the probability for Xn = xn if the random variables X1 . . . Xn−1 take the given values
x1, . . . , xn−1. The expression Xn is a shorthand form for Xtn which is used from now on if the set
of time instants {tn} under consideration is clear. In terms of events the probability P (Xn = xn)
is given by

P (Xn = xn) = P ({ω ∈ Ω : Xn(ω) = xn}) (4.4)
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4. Stochastic differential equations

and the probability for a sample path until the time t is therefore

P (X1 = x1, X2 = x2, . . . , Xn = xn) = P
( n⋃

i=1

{ω ∈ Ω : Xi(ω) = xi}
)

. (4.5)

This notation makes it possible to omit mentioning the probability space on which the random
variables are defined but only talk about their joint distributions or probabilities.

Apart from their joint distribution and their probabilities it is also reasonable to talk about
expectation values and variance of a stochastic process. These quantities depend on time and are
directly written as

µ(t) = ⟨Xt⟩ and σ(t)2 = Var(t) = Var(Xt) . (4.6)

The time dimension makes it possible to introduce the covariance which is a measure of joint
variability or correlation between the values at different time instants t0, t1:

Cov(t0, t1) = ⟨(Xt0 − ⟨Xt0⟩)(Xt1 − ⟨Xt1⟩)⟩ (4.7)

A basic example of a stochastic process is the random walk of a particle observed for example
in the case of Brownian motion where the random variables Xt represents the position of the
tracked particle at time t. Since for Brownian motion we assume a symmetric model in the sense
that there are no preferred directions for the randomly walking particles the expectation value
µ(t) = ⟨Xt⟩ = 0. Intuitively it is also clear that the longer particle propagates the more do we
expect to find it randomly at locations further away from its starting point. This is manifested
in the variance of the stochastic process increasing with increasing time difference between two
observations: Var(t) = t or more generally Var(Xt1 −Xt0) = t1 − t0. For Brownian motion the
increments Xt1 −Xt0 do not depend on the history of the particles trajectory and are distributed
according to a Gaussian distribution. The stochastic process fulfilling those requirements is called
Wiener process and will be of central importance later on.

4.3. Markov chains

An important subset of stochastic processes are the Markov processes, also called Markov chains
for reasons that will become clear soon. A Markov process is a process in which the probability
for Xn = xn only depends on the value of the random variable Xn−1 = xn−1 and not on random
variables at time instants tm, m < n− 1. In conditional probabilities this can be written as

P (Xn = xn|X1 = x1, X2 = x2, . . . , Xn−1 = xn−1) = P (Xn = xn|Xn−1 = xn−1) . (4.8)

This property is called Markov property or memoryless and allows talking about the process as a
“chain” by imagining the subsequent random variables forming a chain of states (i.e. their values
xn). Similar to a chain in which each link is only attached to exactly one other link in each
direction the values of the random variables only depend on their precursor and only influence their
successor. Keeping up the metaphor each realisation (sample path) of the stochastic corresponds
to one particular chain. The entire stochastic process can be represented in the form of a directed
graph with weighted edges, each node corresponding to a value x ∈ R. The edges’ weights then
the conditional probabilities defined above with the weight of the edge from node xi to node xj

being P (Xn+1 = xj |Xn = xi). This probability is in general time dependent which is expressed by
the free parameter n.

Interpreting the nodes as states of a system we can call those conditional probabilities the
transition probabilities of the Markov process. One can then define a transition matrix with the
elements

pij(n) = P (Xn+1 = xj |Xn = xi) (4.9)

26



4. Stochastic differential equations

which gives the probabiliy for transitioning from xi to xj at the time tn. In the same manner
a probability vector for each random variable Xn with components pi can be defined with each
element being the probability of the random variable taking the value xi. Transitioning to the
next state can then be written as

pi(n + 1) =
∑
j

pij(n)pj(n) (4.10)

which is a simple matrix multiplication.
These ideas can only be applied to discrete-time and discrete-state Markov processes. Generalising

them for continuous-time while preserving the discrete state space takes some additional effort.
The transition probabilities now depend on two time instants t0, t1 and give the probability for
finding Xt1 in some state x1 after having found Xt0 in some (other) state x0:

P (X1 = x1|X0 = x0) (4.11)

The Markov property is fulfilled when this probability does not depend on values of the stochastic
process for times t < t0 which is implied in the formulation. Similar to the definitions above a
transition matrix pij(t0, t1) = P (X1 = xj |X0 = xi) and a probability vector pi(t) = P (Xt = xi)
can be defined. The propagation of state from time t0 to t1 is then written as

pi(t1) =
∑
j

pij(t0, t1)pj(t0) (4.12)

4.4. Diffusion processes

To include processes whose states are continous, i.e. x ∈ R, we need to modify the definition of the
transition probability and introduce a density similar to the case of continuous random variables
before. The probability of finding the stochastic process at time tn in the Borel subset B (that is
in any closed or open interval that is ⊂ R) for a given sample path Xi = xi, ti < tn is

P (Xn ∈ B|X1 = x1, . . . Xn−1 = xn−1) =

∫
B

dxn p(t1, xi; . . . ; tn, xn)∫
R dxn p(t1, xi; . . . ; tn, xn)

(4.13)

in terms of the probability density p for a general stochastic process. For Markov processes this
shortens to P (Xn ∈ B|Xn−1 = xn−1) and the corresponding density is defined by integration:

P (Xn ∈ B|Xn−1 = xn−1) =

∫
B

dxn p(tn−1, xn−1; tn, xn) (4.14)

This transition density takes the place of the transition matrix in the case of discrete-state
Markov process. A diffusion process is an important special case of Markov processes which has
no instantaneous jumps and is therefore continuous in some sense and can be assigned a drift
coefficient a(t, x) and a diffusion coefficient b(t, x). The coefficients can be interpreted as “local”
moments of the probability distribution in the limit of small time increments δt reading

a(t, x) = lim
δt→0

1

δt

∫
y∈Bϵ(x)

dy (y − x)p(t, x; t + δt, y) , (4.15)

b(t, x)2 = lim
δt→0

1

δt

∫
y∈Bϵ(x)

dy (y − x)2p(t, x; t + δt, y) . (4.16)

The drift coefficient therefore represents the infinitesimal change in the mean value of the stochastic
process over time and the diffusion represents the infintesimal change in variance. The condition of
having not instantaneous jumps is written as

lim
δt→0

∫
|y−x|>ϵ

dy p(t, x; t + δt, y) = 0 ∀ϵ ∈ R (4.17)
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4. Stochastic differential equations

Again the most popular example of a diffusion process is the Wiener process for which the
transition density p(s, x; t, y) is a normal distribution centered around x with the variance being
t − s. It fulfills the conditions mentioned and its probability density p(s, x; t, y) fulfills a set
of differential equations containg the drift and diffusiont coefficient. These were introduced by
Kolmogorov (1931) from the viewpoint of probability theory and named after him.

∂p

∂t
= − ∂

∂y
(a(t, y)p) +

1

2

∂2

∂y2
(
b(t, y)2p

)
(Forward equation) (4.18)

∂p

∂s
= −a(s, x)

∂p

∂x
+

1

2
b(s, x)2

∂2p

∂x2
(Backward equation) (4.19)

The forward equation gives the forward time evolution of p(t, y) for a known set of initial conditions
(s, x) and the backward equation gives the backward time evolution of p(s, x) for a known set of
final state (t, y). The forward equation was found before by Fokker (1914) and is therefore also
known as Fokker-Planck equation after him and Planck (1917). In other fields it is also called
Smoluchowski equation.

The Wiener process will be the central process in the following analysis of stochastic differential
equations and their applications. While other stochastic processes can also take the place of the
Wiener process in the following chapters, this work limits itself to the Wiener process most of the
time.

4.5. Itô calculus and stochastic differential equations

Going back at the practical example of Brownian motion it makes intuitive sense to write the
stochastic process as differential dXt = dWt where Wt is a Wiener process. This differential does
not exist in a strict sense since the Wiener process is continous but nowhere differentiable so we
need to find a useful extension to the notion of a differential and an integral respectively. To
motivate stochastic integrals we could ask the question of how the test particle will propagate if we
modify the Brownian process such that the average “intensity” of the random motion depends on
the position of the particle rather than being a constant. Calling this intensity b(x, t) this problem
can be intuitively formulated in terms of an integral

Xt =

∫ t

0

b(x, t)dWt (4.20)

For a constant b the sensible solution and therefore the stochastic process representing the test
particle’s position is Xt = bWt. To generalize the integral for all possible b(ω, t) a limiting procedure
similar to the procedure used in standard Riemann integrals is used (Kloeden and Platen, 1992).
The function b(n)(ω, t) is a discretized variant of b which is a step function for a n time steps between
the integration boundaries which are set to [0, t] without losing generality, i.e. b(n)(ω, t) = b(ω, τi)
with τi being some time instant between ti ≤ τi < ti+1. This step function as integrand lets us
split the integral into n parts with constant integrand

Xt =

∫ t

0

b(n)(ω, t)dWt =
n∑
i

∫ ti+1

ti

b(ω, τi)dWt =

n∑
i

b(ω, τi)
(
Wti+1

−Wti

)
. (4.21)

Now taking the limit n → ∞ gives us the so-called Itô stochastic integral which can be seen as
a generalisation of Riemann-Stieltjes integral with integrands and integrators being stochastic
processes instead of deterministic functions. It has been introduced by Itô (1944). We saw that
in genreal b can also be a stochastic process itself which is why b(ω, t) was written in the above
equation. The integral inherits the stochastic properties of the stochastic processes involved. This
means the integral itself is again a stochastic process living on the same probability space as these
processes.
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4. Stochastic differential equations

A central example is the Itô process which is the solution to the stochastic differential equation

dXt = a(t,Xt)dt + b(t,Xt)dWt (4.22)

Apart from the stochastic term b(Xt)dWt the evolution of Xt also consists of a deterministic term
a(Xt)dt which, a and b being functions R → R can be evaluated as Riemann integral. It can be
shown (Kloeden and Platen, 1992) that solutions of this equation are a diffusion process itself
if a and b are suffienctly well-behaved. Therefore they fulfill the Kolmogorov equations (4.18)
and (4.19) with exactly the a and b in the differential equation (4.22). The concepts introduced
in the preceding sections can be extended to vector spaces with n dimensions. We then have a
multidimensional Itô process which is essentially a set of n coupled Itô processes

dX⃗t = A⃗(t, X⃗t)dt + B(t, X⃗t)dW⃗t (4.23)

or written in terms of indices using Einstein summation convention

dXi,t = Ai(t, X⃗t)dt + Bij(t, X⃗t)dWj,t (4.24)

where X⃗t is now a vector-valued stochastic process. This can also be written in integral form

Xi,t = Xi,0 +

∫ t

t0

dtAi(t, X⃗t) +

∫ t

t0

dWj,tBij(t, X⃗t) (4.25)

where the first integral is an ordinary integral and the second is an Itô integral. The drift coefficient
A⃗ then has to be a vector-valued function and the diffusion coefficient B is a n× n-matrix valued
function. The Wiener process also has to be replaced by a multidimensional Wiener process, that
is a set of n independent Wiener processes forming a vector. The Kolmogorov forward equation,
referred to as Fokker-Planck equation from now on, then reads

∂p(t, x)

∂t
= − ∂

∂xi
(Ai(t, x)p(t, x)) − ∂2

∂xi∂xk
(Bij(t, x)Bjk(t, x)p(t, x)) (4.26)

for a chosen initial condition p(t0, x0) = p0, again summing over every index occuring twice. Of
course, the inverse statement holds too: if a function p solves a Fokker-Planck equation with
coefficients a and b2 (or their vector and matrix valued counterparts) it is the density of an Itô
process if the coefficients are suffienctly smooth and bounded. In general more than one stochastic
process can be found for a given Fokker-Planck equation because it is only determined up to b2

(or BTB in the matrix case) which does not neccessarily imply a fixed choice of b or B. This
equivalency between a Fokker-Planck equation given in terms of its drift and diffusion coefficients
and a Itô process stochastic differential equation is of central importance in this work.

4.6. Sampling the stochastic process

Fokker-Planck equations originating from physical models can be solved by writing down an
equivalent stochastic differential equation and estimating its probability distribution numerically.
To that end we sample the random process and create a histogram of the outputs. Suppose one
bin is delimited by [x0, x1]. The expected amount of samples N in this bin is then given in terms
of the probability density p(x) by

N([x0, x1]) = N0

∫ x1

x0

p(x)dx (4.27)

where N0 is the total number of samples taken. If we assume that the chosen bins are sufficiently
small, we can say that p(x) is approximately constant in the interval of the bin. Calling the center
point of the bin x = (x0 + x1)/2 we can write∫ x1

x0

p(x)dx = p(x)

∫ x1

x0

dx = p(x)(x1 − x0) =
N([x0, x1])

N0
(4.28)
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t0 t1

t

x0

x

p(x)

a) A small number of realisations of the stochastic process that solves the given stochastic differential
equation (4.31), one highlighted in red. All of those start at the value given by the initial condition
and propagate until the final time t1. The probability density estimated by counting the number of
sample paths ending in the respective bins is shown in the right box.

t0 t1

t

x0
x

p(x)

b) The same procedure but showing 300 sample paths. For comparison the expected normal distribution
is shown. It is clear that for an increasing number of sample paths considered the estimated
distribution converges to this distribution.

Figure 4.1.: Schematic depiction of the process of sampling the solution of a stochastic differential
equation which itself is a stochastic process and estimating the probability density.

30
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This leads to

p(x) =
N(x)

N0∆x
=: H(x) (4.29)

with the bin width ∆x = x1−x0. In other words if we normalize the histogram N(x) with the total
sample count N0 and the bin width ∆x, the histogram’s values approximate the probability density
p(x). This of course also holds if the bin sizes are not constant which the case for logarithmic axes
scalings. The approximation is better when ∆x is smaller since the actual variations of p(x) over
the course of a bin have lesser effect. Smaller bins on the other side lead to fewer samples in each
bin which in turn leads to larger (relative) statistical errors so a reasonable bin size has to be used.

This approach to solving a Fokker-Planck equation numerically using this scheme is depicted in
Figure 4.1a for the very basic example equation

∂p

∂t
=

1

2

∂2p

∂x2
(4.30)

which is simple Wiener diffusion with a constant diffusion coefficient b2 = 1. The underlying
stochastic differential equation is then simply given by dXt = dWt. To estimate the density we are
integrating the stochastic integral

Xt1(ω) = Xt0 +

∫ t1

t0

dWt(ω), Xt0 = x0 (4.31)

for numerous random sample paths ω (the details of how exactly this integration is taking place
are discussed in the following chapters) and then estimate the density p(t = t1, x) at some later
point in time t1 by binning the x-dimension and counting how many sample paths are in each bin.
In Figure 4.1a a small number of sample paths are depicted with the resulting estimation for the
probability density. Naturally using only few sample paths this estimate is not very useful but
as shown in Figure 4.1b sampling some more realisations gives a good estimate of the expected
density. Writing this procedure down we get

p̃(t1, x) =
1

2∆x

∫ x+∆x

x−∆x

p(t1, x) =
1

2∆x

Number of sample paths with x− ∆x ≤ X1(ω) < x + ∆x

Number of sample paths
(4.32)

and the result is in the form of a density histogram as discussed above. The fraction on the
rightmost side of this equation directly corresponds to the fraction in equation (4.13) while
replacing the probability density there with actual number of events observed, similar to the most
basic interpretation of probability.

Since the stochastic process Xt is a function X(t) (for each realisation) and in physical terms
its values x usually resemble a quantity like location or momentum it seems natural to call every
sample path a “particle” with a trajectory, propagating as the stochastic process evolves. This
notion is also used by Strauss and Effenberger (2017) who call it a pseudo particle since in spite of
similar properties it is not directly related to a physical, existing particle. In the further course we
shall adopt this terminology.

So far it has been implied that the time integration is done in forward direction. This means that
pseudo particles are released by some source at some time and then propagate and are “detected”
(their values are read and analysed) at a later time. Forward integration is useful if the state of the
particles is relevant and will be evaluated in a large part (or the whole of) phase space. In contrast
the integration of the stochastic differential equation can also be performed backwards in time
instead of, as discussed, forwards in time. In this case we start at t1 and work our way back to t0.
The probability density is then no more described by the Kolmogorov forward equation (4.26) but
by the Kolmogorov backward equation, which reads

∂p(t, x)

∂t
= −Ai(t, x)

∂p(t, x)

∂xi
−Bij(t, x)Bjk(t, x)

∂2p(t, x)

∂xi∂xk
(4.33)
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and is the adjoint equation of the forward equation (Kopp et al., 2012). This description is useful
in situations where the detection of particles takes place in a small part of phase space so that after
pseudo particles propagated (in the forward picture) most of them will not arrive at the detector
and are therefore thrown away. To save computation time the roles of detection and particle
source are reversed in the time backwards picture. Pseudo particles start at the detector and then
propagate backwards in time to eventually reach the source. The computational effort decreases
of course only if the source region (i.e. the effective detection region in the time-backwards case)
is larger than the detection region. This is the case for example in the modelling of cosmic ray
propagation of cosmic rays originating from the sun to Earth, where the Earth is smaller than the
emitting region. In the context of this work we deal only with highly localized sources (i.e. particles
originating at a single point in phase space) but are interested in their propagation regardless from
their final position in phase space the time-forward integration is the only sensible variant.
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5. Numerical solution of the transport
equation

Starting from the transport equation (3.39) which incorporates spatial diffusion (κ), convection
with the bulk velocity u, momentum diffusion (a1, a2), losses (ṗ) and particle sources or sinks (S)

∂F

∂t
= − u

∂F

∂z
+

∂

∂z

(
κ
∂F

∂z

)
− 1

p2
∂
(
p2a1

)
∂p

∂F

∂z

+

(
p

3

du

dz
+

∂a1
∂z

)
∂F

∂p
+

1

p2
∂

∂p

(
p2a2

∂F

∂p

)
+

1

p2
∂

∂p

(
p2ṗF

)
+ S

(5.1)

we are looking for a set of stochastic differential equations describing the same system. It is
convenient to use the shock rest frame as inertial system so that the shock front itself is always at
z = z0 = 0 and the bulk velocity is given relative to the shock front’s movement in the jet. The
source term is given in terms of a typical spatial number density n0 as

S =
cβ0n0

4πp2inj
δ(z − z0)δ(p− pinj) (5.2)

representing continuous injection of particles at the shock front z0 with the injection momentum
pinj. First it is neccessary to transform into a system of “code units” in which all quantities are
dimensionless. Following Krülls and Achterberg (1994) we define the code units as

τ =
c2β2

0

κ0
t, x =

cβ0

κ0
z, y =

p

pinj
, (5.3)

write the bulk velocity in terms of the light speed β = u/c and normalize the coefficients with
typical values β0 and κ0:

β̄ =
β

β0
, κ̄ =

κ

κ0
, ā1 =

a1
cβ0pinjy

, ā2 =
κ0a2

c2β2
0p

2
injy

2
. (5.4)

The momentum losses written in terms of the dimensionless momentum y read

ẏ =
κ0

c2β2
0pinj

ṗ (5.5)

and finally the distribution and the source term must be written in dimensionless form as

F̄ =
4πp3inj
n0

F, S̄ = δ(x− x0)δ(y − 1) . (5.6)

Plugging those relationships into equation (5.1) the resulting equation is not substantially different
and reads

∂F̄

∂t
= − β̄

∂F̄

∂x
+

∂

∂x

(
κ̄
∂F̄

∂x

)
− 1

y2
∂
(
y2ā1

)
∂y

∂F̄

∂x

+

(
y

3

du

dx
+

∂ā1
∂x

)
∂F̄

∂y
+

1

y2
∂

∂y

(
y2ā2

∂F̄

∂y

)
+

1

y2
∂

∂y

(
y2ẏF̄

)
+ δ(x− x0)δ(y − 1) .

(5.7)
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5. Numerical solution of the transport equation

In order to write this equation in terms of a system of stochastic differential equations it needs to
be expressed in conservation law form. With the differential number density N = y2F̄ this reads:

∂N

∂τ
= − ∂

∂x

[(
β̄ +

∂κ̄

∂x
+ y

∂ā1
∂y

+ 3ā1

)
N

]
+

∂2

∂x2
(κ̄N)

− ∂

∂y

[(
−y

3

dβ̄

dx
− y

∂ā1
∂x

+ y2
∂ā2
∂y

+ 4ā2y − ẏy2
)
N

]
+

∂2

∂y2
(
ā2y

2N
)

+ δ(x− x0)δ(y − 1) .

(5.8)

From this equation it is straightforward to extract the coefficients of the corresponding stochastic
differential equation. The multi-dimensional coupled Itô process shown in equation (4.23) reads in
two dimensions x, y

d

x

y

 =

A0(x, y)

A1(x, y)

 dτ +

B00(x, y) B01(x, y)

B10(x, y) B11(x, y)

dW⃗ (5.9)

which incorporates the drift vector A⃗ and the diffusion matrix B and where dW⃗ is a two-dimensional
Wiener process. These coefficients can be taken from equation (5.8) and we can directly see that
the diffusion matrix B is diagonal:

A0(x, y) = β̄ +
∂κ̄

∂x
+ y

∂ā1
∂y

+ 3ā1 , (5.10)

A1(x, y) = −y

3

dβ̄

dx
− y

∂ā1
∂x

+ y2
∂ā2
∂y

+ 4ā2y − ẏy2 , (5.11)

B(x, y) =

√
κ̄ 0

0 y
√
ā2

 . (5.12)

This system of two generally coupled stochastic differential equations is equivalent to equation (5.8)
as shown in chapter 4 and one can attempt to find numerical solutions to it to approximate the
transport equation. The details of this are outlined underneath. In general all coefficients (β̄, κ̄,
ā1,2, ẏ) can depend on both the spatial or momentum variabe, which was omitted in the preceding
equations for readability.

5.1. Explicit Euler scheme

The integrals of the stochastic differential equation have to be approximated numerically which
can be realized with a variety of numerical schemes based on discretizing the integration variable.
They can be categorized into explicit and implicit schemes where explicit schemes calculate the
next step’s value only using the state at the current step while implicit schemes are given in
terms of systems of equations that contain both values for the current step and the next step.
In the case of implicit methods the system of equations has to be (numerically) solved for the
next step’s variables which requires additional computation time. Every scheme also has an order
since they are essentially truncations of a Taylor series. Therefore schemes with an order higher
than 1 generally contain derivatives of the coefficients of the differential equation whose evaluation
also increases the computational effort since they require additional evaluations of the coefficient
functions.

The constant source term is realized in the simulation by giving each pseudo particles a different
start time t0 and letting them all propagate until they reach the final time T at which their state
is evaluated. They all start at the injection location and momentum x = 0, y = 1. This setup
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5. Numerical solution of the transport equation

corresponds to the continous injection of particles as it is assumed in our model because of the
system’s symmetry under time translations.

The simplest numerical scheme is the Cauchy-Euler-Scheme also known as Euler-Mayurama-
Scheme which is a first-order explicit scheme. Discretizing the time by introducing some time step
∆τ leads to the solution of the integral equation as

X⃗n = Xn + A⃗(tn, X⃗n)∆τ + B(tn, X⃗n)∆W⃗n . (5.13)

The increments of the Wiener process are normally distributed with a variance of ∆τ so they can
be written as

∆W =
√

∆τ G (5.14)

for a standard-normally distributed variable G (which is with variance 1 and mean 0) (Strauss and

Effenberger, 2017). This random number must be generated for each increment of X⃗ and for each
component of ∆W independently and identically distributed which is achieved by using a seperate
random number generator seeded differently for each component. For this work the random number
generators of the PCG family of generators is used (O’Neill, 2014). As described above a set of
stochastically independent pseudo-particles are simulated and their positions in phase space after
some time T can be analysed using histograms as discussed in the previous section. For this we
will use a 1+1-dimensional model with x as spatial dimension and p as relativistic momentum.

The shock itself is in principle an infinitely thin gradient between the upstream and downstream
velocity βu and βd. Since the pseudo-particles can only gain momentum if they experience the
gradient at some point of their propagation, and since they propagate in discrete steps, an infinitely
thin gradient would always be missed by the pseudo particles. Therefore a smoothed form of the
shock profile which has a finite width and gradient has to be used to observe acceleration. The
shock profile is approximated by a hyperbolic tangent function which extends the gradient to the
shock width Xsh (Krülls and Achterberg, 1994):

β̄ = a− b tanh
x

Xsh
. (5.15)

The derivative of the profile is required in the drift coefficient and reads

dβ̄(x)

dx
=

−b

Xsh cosh2(x/Xsh)
. (5.16)

The coefficients a and b are given in terms of the compression ratio r = βu/βd which gives the
ratio of the bulk velocity upstream and downstream of the shock:

a =
1

2
βu(1 +

1

r
), b =

1

2
βu

r2 − 1

r2 + r
=

1

2
βu

r − 1

r
. (5.17)

Those two parameters are the physical parameters governing the bulk velocity profile. Zhang (2000)
showed that the need for an analytically smoothed shock profile can be mitigated by using skew
brownian motion which essentially means that the particles “local” time is scaled after crossing
the shock. Their algorithm basically counts the number of shock crossings a particle experiences
during its trajectory and applies the expected momentum gains after the simulation finished.

The first model considered in this work is pure diffusive shock acceleration which means we
neglect momentum diffusion and losses and the coefficients a1 = a2 = ẏ = 0. For these assumptions
the stochastic differential equations simplify considerably and read

A0(x, y) =
∂κ̄

∂x
+ β̄, A1(x, y) = −1

3

dβ̄

dx
y , (5.18)

B00(x, y) =
√
κ̄, B10 = B01 = B11 = 0 . (5.19)
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Figure 5.1.: Increasing the ratio of the shock width Xsh to the advective step size ∆xadv leads
to steeper power laws since the velocity gradient is less steep and particles can only
increase their energy by a smaller amount in crossing it. The compression ratio in these
runs is r = 2 and the expected comparison values shown as dashed lines are from Krülls
and Achterberg (1994).

For the diffusion coefficient we follow Krülls and Achterberg (1994) and Toptygin (1980) and
assume that it is proportional to the squared bulk velocity

κ̄(x) = qβ̄(x)2 (5.20)

with the proportionality constant q. For comparison of the results of this work with previous
results this assumption is applied in the following. In future applications, this coefficient is chosen
(or prescribed by for example large-scale magnetohydrodynamic simulations) depending on the
assumed physical turbulence situation and such a condition will generally not hold.

5.1.1. Numerical steps

The choice of the timestep ∆τ , which is the Monte-Carlo parameter, is crucial for efficient as well
as accurate simulation of shock acceleration. If the timestep is chosen to be too large in comparison
to the shock width Xsh most of the particles are not able to experience the shock gradient and
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therefore will accelerate less than expected. On the other hand diffusive shock acceleration depends
on the particle crossing the shock multiple times due to diffusion so either the diffusion coefficient
needs to be high enough or the timestep large enough. This also justifies the approximation of
the shock gradient as a continous function since for large enough diffusive length scales the shock
appears infinitely thin from the perspective of the particle. These effects reflect the balance between
diffusion and advection neccessary to observe efficient acceleration that is also a property of the
physical (i.e. real particles instead of pseudo particles) situation. In terms of equations one needs
the advective step size ∆xadv (i.e. the typical length a pseudo particle travels during one time step
due to advection) to be smaller than the shock width Xsh and the latter again being smaller than
the diffusive step size ∆xdiff (i.e. the average length of propagation due to diffusion):

∆xadv < Xsh < ∆xdiff . (5.21)

Setting the spatially variable diffusion coefficient to a constant value κ̄ we can observe the interplay
of the advective step size and the shock width in Figure 5.1. Choosing a smaller shock width leads
to flatter power laws as one would expect since it resembles a better approximation to the infinitely
thin shock. The expected powerlaw index from equation (3.58) is s = −4 for a compression ratio
of r = 2 used in this simulation.

In the case of spatial diffusion as given by equation (5.20) the step sizes are directly related to
the spatial drift and diffusion coefficients which for pure diffusive shock acceleration means

∆xadv = A0∆τ =

(
∂κ̄

∂x
+ β̄

)
∆τ =

(
κ̄

Xdiff
+ β̄

)
∆τ

∆xdiff = (B00 + B01)
√

∆τ =
√
κ̄∆τ

(5.22)

where (following Krülls and Achterberg, 1994) the diffusive length scale Xdiff = 4∆xdiff is introduced.
Since in our model κ̄ = qβ̄2, we can write

∆xadv =

(
qβ̄2

Xdiff
+ β̄

)
∆τ ,

∆xdiff =

√
qβ̄2∆τ .

(5.23)

To study the influence of varying numerical step sizes on the momentum power-law indices we
solve this system of equations for ∆τ and q since β̄ is in practice a prescribed physical parameter.
We can identify ∆xdiff in the equation for ∆xadv

∆xadv =
∆x2

diff

Xdiff
+ β̄∆τ =

∆x2
diff

Xdiff
+ ∆xdiff

√
∆τ

q
= ∆xdiff

(
∆xdiff

Xdiff
+

√
∆τ

q

)
(5.24)

and denote the ratio of step sizes with δ:

δ :=
∆x′

adv

∆xdiff
(5.25)

which leads to √
∆τ

q
= δ − ∆xdiff

Xdiff
≡ δ̃ . (5.26)

Looking at the equation for the diffusive step size in equation (5.23) we find

∆τ =
∆x2

diff

qβ̄2
. (5.27)
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ratio of advective step size to diffusive step size as derived in the text. The remaining
parameters are chosen according to the equations in the text. Both β̄s and q vary for
different datapoints and r = 4 which gives an expected power-law index of −2. The
Cauchy-Euler scheme used in these runs is not able to reproduce this index.

With this we can rewrite equation (5.26)

δ̃ =
∆xdiff

qβ̄
and δ̃ =

∆τ β̄

∆xdiff
. (5.28)

From these two equations we can read off the desired parameters ∆τ and q:

q =
∆xdiff

β̄
δ̃−1 =

∆xdiff

β̄

(
δ − ∆xdiff

Xdiff

)−1

,

∆τ =
∆xdiff

β̄
δ̃ =

∆xdiff

β̄

(
δ − ∆xdiff

Xdiff

)
.

(5.29)

Since q and β̄ have to be positive in a physical environment and equation (5.21) must hold, the
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size ∆xadv = 0.1 for all runs since Figure 5.2 shows that the choice makes no significant
difference. Other parameters are ∆τ = 0.05. Surprisingly, smoother shocks produce
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following limits on δ are imposed:

∆xdiff

Xdiff
< δ =

∆xadv

∆xdiff
< 1 . (5.30)

One can see that this implies the condition that ∆xadv < ∆xdiff, and Xsh has to be chosen in
between those two step sizes. In the special case of Xdiff = 4∆xdiff the ratio ∆xdiff/Xdiff = 1/4,
which imposes a lower limit of 1/4 on δ. In terms of the inverse of δ we have

1 < δ−1 =
∆xdiff

∆xadv
<

Xdiff

∆xdiff
= 4 (5.31)

which gives a range of senseful ratios between the advective and diffusive pseudo particle steps
that can be studied. After choosing some value for one of those steps (which one is in principle not
relevant) and a value for δ, all other parameters can be calculated. Up until now all occurences of
β̄ have of course been dependent on x. Considering that

β̄d = β̄u/r < β̄(x) < β̄u (5.32)
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Figure 5.4.: Influence of different timesteps and different spatial escape boundaries on the powerlaw
index. Convergent behavior is observed if enough single time steps are simulated and
the free-escape boundary is sufficiently far away from the shock. The finite boundary
can be compared with a limited size of the physical acceleration region.

the parameters can be fixed using β̄u as upper limit. Then, the lower limits of q and ∆τ are used.
Taking a look at the definitions of the step sizes in equation (5.23) at the other end of possible
values of β̄(x) it is clear that both ∆xdiff and the second term of ∆xadv deviate at maximum by a
factor of 1/r whereas the first term of ∆xadv deviates by a factor of 1/r2. Since r > 1, ∆xadv is
even smaller in relation to ∆xdiff for β̄(x) → β̄u/r which means the neccessary constraints are still
fulfilled.

This range for δ is analysed in Figure 5.2 where the powerlaw index is determined for each
set of parameters by using a weighted linear regression model on the histograms produced by
the simulation of pseudo particles. The Poisson error of each bin is given by

√
N where N is

the number of pseudo particles in this bin. For the logarithm of the bin values that is used for
the linear regression the error is given by

√
N/N = 1/

√
N which gives the weights used. The

results shown in Figure 5.2 show the expected behavior for different diffusive steps: if the diffusion
step is too low, the efficiency of the acceleration decreases, which also happens if it is too high.
In this and the following simulations the compression ratio is r = 4 to evaluate a strong shock
which gives s = −2 and the physical parameters arise from the chosen numerical step sizes and
relations for each datapoint. The results show that there is a broad region of nearly constant
and flat powerlaws in the range 1.8 < δ−1 < 3.0. Furthermore the choice of the value of ∆xadv is
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making little difference in the method’s behavior despite being analysed over nearly three orders of
magnitude. This is reasonable since all other parameters are adjusted to its value and the choice
of ∆xadv is therefore not more than a choice of units.

5.1.2. Shock width

If the step sizes are fixed the shock width Xsh is constrained in the range [∆xadv,∆xdiff] by
equation (5.21). Therefore we can define another parameter 0 ≤ σ ≤ 1 which maps this range
linearly and allows the discussion of the shock width independent from other parameters.

Xsh = (1 − σ)∆xadv + σ∆xdiff . (5.33)

For σ = 0, Xsh is at the low end of the possible range and for σ = 1 at the high end. In Figure 5.3
the effect of the shock width on the power-law indices is shown. The inverse value of δ is shown
to spread the interesting part of this plot further out. If ∆xadv ≈ ∆xdiff the choice of the shock
width has few effects on the power-law index but if the step size ratio increases it gets clear that
shock widths near the diffusive step size lead to more efficient acceleration. As in Figure 5.2 the
spectrum steepens considerably for δ → 1/4. This holds for all choices of shock width.

5.1.3. Asymptotic behavior

It is left to study how fast the numerical scheme converges depending on the finite timestep and
when imposing a boundary condition. Considering the timestep it is clear from Figure 5.4a that
the scheme reaches equilibrium for decreasing ∆τ in the same manner as it does for an increasing
runtime T that the particles are allowed to propagate. There is therefore a minimum number of
timesteps a pseudo particle has to propagate to allow the system to reach equilibrium which is
around 1000 steps.

Up until now an infinite acceleration region has been assumed (XC = ∞). Introducing a spatial
boundary at which particles escape the system does not affect the previous findings significantly.
When particles reach a position |x| > XC they are removed from the simulation which corresponds
to the situation where the acceleration region is finite. For boundary radii below ≈ 50∆xdiff

a significant steepening in the momentum spectrum is observed in Figure 5.4b since particles
escape before they can accelerate to higher momenta. As one would expect the point at which the
boundary starts taking effect scales with the diffusive length ∆xdiff .

The expected power-law index of −2 could not be reproduced using this numerical scheme,
contrary to the results of Krülls and Achterberg (1994). The closest reproduction is found for a
value of σ close to 1, i.e. choosing the shock width Xsh close to the diffusive step size ∆xdiff , and
for δ ≈ 1/3. This can be inferred from Figure 5.3. The electron spectra in both momentum and
spatial direction produced with these parameters are shown in Figure 5.5 where also the temporal
evolution of the spectrum can be observed. The qualitative structure of the results for the spatial
distribution and momentum spectrum closely resembles the results of Krülls and Achterberg (1994).
Furthermore contour plots are also shown for the two longest observation times which visualize
that particles reach a homogenous momentum distribution downstream after a time long enough,
while the distribution upstream is not significantly changing and reaches equilibrium faster. These
problems encountered with this method most likely lie in the choice of the numerical scheme used,
which is why some alternative schemes are studied in the further course.

5.1.4. Momentum diffusion

The same model can also be used to study second-order Fermi acceleration by incorporating
momentum diffusion in the transport equation (see section 3.2.3). In a simple model for pure
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Figure 5.5.: Results from runs with the parameters that lead to the closest reproduction of the
expected power-law index of −2. Parameters are given in the figure and are discussed
in the text. The top two histograms are both integrated over the respective dimension
not shown. Contours are shown for T = 113 and T = 1130, the contours for the latter
are more noisy because the same amount of pseudoparticles were used in each run of
which more are outside of the field of view of the contour plot.
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momentum diffusion β̄ = ā1 = 0 and the spatial diffusion coefficient κ̄ = 1. Incorporating free-
escape boundaries and a constant momentum diffusion leads to the results shown in Figure 5.6.

5.2. Higher-order and implicit numerical schemes

The inability to predict the expected power-law index makes it necessary to use higher-order
or implicit numerical schemes. Some possibilities are shown in the following and results on
improvements are given.

Predictor-corrector scheme

At first a second order predictor-corrector scheme is analysed as given by Kloeden and Platen
(1992) as follows:

X⃗n+1 = X⃗n +
(
A⃗(X⃗s) + A⃗(Xn)

) ∆τ

2
+ D⃗ (5.34)

using a supporting value
X⃗s = X⃗n + A⃗(X⃗n)∆τ + B(X⃗n)∆W⃗ (5.35)

and the diffusive step D which for a diffusion matrix B as in pure diffusive shock acceleration (only
Bxx ̸= 0) reduces to

Dx =
1

4

(
Bxx(X⃗+) + Bxx(X⃗−) + 2Bxx(X⃗n)

)
∆Wx

+
1

4

(
Bxx(X⃗+) −Bxx(X⃗−)

) (∆W 2
x − ∆τ

)
√

∆τ

Dy = 0

(5.36)

The supporting value X± are given by

X⃗± = X⃗n + A⃗(X⃗n)∆τ ±
√

∆τ

Bxx(X⃗n)

Bxy(X⃗n)

 (5.37)

with only the root mean square diffusion of the stochastic process. This scheme can be extended
to a predictor-corrector scheme as used by Achterberg and Schure (2011) and also proposed by
Kloeden and Platen (1992). Predictor-corrector schemes have the advantage of using an implicit
scheme but without the need to solve a system of equations by predicting the next step’s value
using explicit scheme. The explicit scheme is therefore the “predictor” and the implicit scheme the
“corrector”. After generating one vector of random variables ∆W⃗ that is kept fixed throughout the
calculation the predictor is calculated with the second-order explicit scheme mentioned above:

X⃗p
n+1 = X⃗2nd order

n+1 (5.38)

The corrected final result of the scheme is then the average of the predicted value (replacing the
implicit dependence) and the initial value:

X⃗n+1 = X⃗n +
∆τ

2

(
A⃗(X⃗p

n+1) + A⃗(X⃗n+1)
)

+ D⃗ (5.39)
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Figure 5.7.: Different numerical schemes are compared in their ability to reproduce flat power laws
in the scenario of diffusive shock acceleration. While the implicit scheme performs worse
than the standard Cauchy-Euler scheme, the other two are considerable improvements.

Implicit Euler scheme

The implicit Euler scheme is the implicit couterpart of the explicit Euler scheme mentioned above
with the evaluation of the advective step coefficient taking place at the new value of X⃗ instead of
the old one.

X⃗n+1 = Xn + A⃗(tn+1, X⃗n+1)∆τ + B(tn, X⃗n)∆W⃗n (5.40)

This method needs an algorithm for solving the resulting equation for X⃗n+1 for which Broyden’s
method (Broyden, 1965) as root finding algorithm is used.

Semi-implicit scheme

A semi-implicit scheme is a scheme that considers the advective step at the current value X⃗n as
well as the next value X⃗n+1. The Euler scheme with a degree of implicitness α reads

X⃗n+1 = Xn +
(
αA⃗(tn+1, X⃗n+1) + (1 − α)A⃗(tn, X⃗n)

)
∆τ + B(tn, X⃗n)∆W⃗n (5.41)
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Figure 5.8.: Calculation of diffusive shock acceleration at five different times T . The histograms in
the left panel are integrated over momentum, and the histograms right panel show the
distribution near the shock. Using the semi-implicit second-order scheme the expected
power law with index −2 could be matched closely. Corresponding contour plots are
shown in Figure 5.9

and the Euler-Mayurama scheme or the implicit Euler scheme are recovered for α = 0 or α = 1
respectively. Gardiner (2009) gives a version of this scheme for a vector-valued stochastic process
which in general involves the calculation of a derivative of B if no assumptions about B can be
made. The coefficients

Cij(t, X⃗) =
∑
k

Bkj(t, X⃗)
∂Bij(t, X⃗)

∂xk
(5.42)

are zero if the diffusion matrix B is independent of all coordinates and can be used to form a vector

Ci =
∑
j

Cij (5.43)

With this vector the new value X⃗n+1 is given in terms of two equations

X⃗n+1 = X⃗n + A⃗(ts, X⃗s)∆τ − 1

2
C⃗(ts, X⃗s)∆τ + B(ts, X⃗s)∆W⃗ (5.44)

X⃗n+1 = 2X⃗s − X⃗n (5.45)

which can be combined into one equation that can be solved for X⃗s again using Broyden’s method
as mentioned above

0 = 2X⃗n − 2X⃗s + A⃗(ts, X⃗s)∆τ − 1

2
C⃗(ts, X⃗s)∆τ + B(ts, X⃗s)∆W⃗ (5.46)

giving the result using equation (5.45).

46



5. Numerical solution of the transport equation

Comparison

Results from the different numerical schemes discussed are shown in Figure 5.7 using the same
shock acceleration model as before. The implicit scheme gives no improvements compared to
the Cauchy-Euler scheme but instead misses the expected power-law index even more. Both the
predictor-corrector scheme and the semi-implicit scheme are able to produce power laws that are
considerably closer to the expectation, while for the chosen parameters −2 is still not reached. The
best scheme is the semi-implicit scheme, whose detailed histograms are presented in Figure 5.8 and
corresponding contour plots are depicted in Figure 5.9. They match the analytical solutions of
Toptygin (1980) closely.

All schemes of course come with a runtime penalty compared to the Cauchy-Euler scheme. Of the
others the predictor-corrector scheme is by far the fastest since it avoids the need to iteratively find
the roots of an equation in every step and it requires approximately twice the runtime on the CPU
used. The remaining two schemes take ≈ 11 (implicit scheme) and ≈ 21 (semi-implicit scheme)
times as long as the Cauchy-Euler scheme. Especially in the case of the semi-implicit scheme,
investing time in the optimization of the code may improve the runtime, since assumptions about
the diffusion coefficient (such as its diagonality) makes the possibly time-consuming calculation of
parts of the required differentials obsolete.

5.3. Technologies used for numerical integration and code
structure

The code created for integrating the stochastic differential equations is written in C++ (ISO,
2020) to achieve maximal computational speed with Cython bindings (Behnel et al., 2011) so
that the integration process can be more conveniently steered from Python (Python Software
Foundation, 2022) where the evaluation and presentation of the results also take place. It is
found under https://github.com/pguenth/sde-crt/releases/tag/masterthesis. The C++-
library consists of a central class PseudoParticleBatch which is inherited to customize a particular
simulation type. This class groups a set of PseudoParticle instances which run independently but
have a set of common options that are added to the PseudoParticleBatch. When constructing
a descendant of PseudoParticleBatch parameters defining the simulated situation can be set.
These are

• breakpoints of type TrajectoryBreakpoint to impose conditions which stop the particles
from propagating once reached. This is for example used to set the time of measurement and
is checked at every iteration,

• boundaries (TrajectoryBoundary) that in general can be used to realize transformations
which happen if the pseudo particle reaches some phase space point. An example is the
implementation of cyclic boundary conditions while free-escape boundaries are implemented
using breakpoints. No boundaries in this sense were used in this work,

• numerical schemes that can be implemented by inheriting SDEScheme. Schemes avail-
able in the library are the ones described in this work and can be found in the file
src/cpp/batch/scheme.h,

• the stochastic process used. In this work only Wiener processes have been used,

• the start phase space points and times of the pseudo particles and their count,

• callbacks for the drift and diffusion coefficients denoted in vector and matrix form respectively.
These are expected to recieve a SpaceTimePoint which represents a point in time and phase
space and return a vector or matrix. Additional (constant) parameters required to calculate
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Figure 5.9.: Comparison of the semi-implicit second-order scheme with analytical solutions from
Toptygin (1980). The contour plots, depicted at four different times, show good
agreement with the analytical solution. Histograms for the same runs are shown in
Figure 5.8
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5. Numerical solution of the transport equation

the coefficients can be added through binding of function arguments as supported by the
C++ standard library’s std::bind,

• a callback for retrieving the timestep which can be used for realizing variable timesteps. This
also is not used in this work.

In principle the code is able to conduct simulations in arbitrary dimension, the limiting factor
being the accuracy of the numerical schemes and their potential limit on dimensions supported.
Tracking of the pseudo particle’s trajectory through phase space is also possible but of course
requires orders of magnitude more memory, so it was switched off for the simulations in this work.

For vector calculations in C++ the Eigen library is used (Guennebaud, Jacob, et al., 2010). In
the process of evaluating the results the popular Python libraries NumPy (Harris et al., 2020)
and SciPy (Virtanen et al., 2020) are used. The figures in this work are created using ProPlot
(Davis et al., 2021) which is a wrapper for the common MatPlotLib library (Hunter, 2007).
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6. Radiative transfer

Astrophysicists face a central problem few physicists in other disciplines face: the subjects of their
studies are located far away from the astrophysicist’s scope of influence, in fact so far that humanity
will most likely never be able to physically reach most of them. This limits the possibilities for
observation dramatically, not only in that taking measurements gets technologically very intensive
in relation to the achieved precision but also in that the experimental setup itself can not be
designed to the researcher’s need as it is the case in most research areas. To study a certain idea,
theory or concept, one must first find objects in the universe that fit the chosen parameters and is
observable given the technology available; maybe no such object might be available at all. There
has been great technological advancement in the types of telescopes, detectors and techniques
available, but the fundamental problem stands.

In astronomy and astrophysics observations are in most cases made by detecting electromagnetic
radiation here on Earth. To draw conclusions about the mechanisms in astronomical objects
that eventually lead to radiation it is crucial to be aware of the relation of the radiation recieved
on Earth and the radiation emitted by the object under scrutiny. It is therefore a vital part of
astrophysical modeling to also model the parameters which influence this relationship since they
form the base of every statement about distant objects’ radiative mechanisms. Many different
techniques have evolved to achieve maximum spectral coverage and precision in angular resolution
as well as in flux. Other than electromagnetic radiation leptons like myons and neutrinos, protons
and other atomic nuclei arriving on Earth from a multitude of sources are also the subject of
investigation but will not be further discussed here.

6.1. Elements of radiation physics

The fundamental quantity of electromagnetic radiation is the intensity I of radiation. It is defined
as the radiated energy E of radiated photons of a certain photon energy ϵ that passes through an
area A and solid angle Ω in a given amount of time t. In differential notation this reads

Iϵ =
dE

dϵdAdΩdt
. (6.1)

When a beam of parallel rays with intensity I is emitted through the area dA for some timespan
dt photons are emitted inside a volume dV = cdtdA. Therefore one can define the spectral and
angular energy density u as

u(ϵ,Ω) =
IdAdt

dV
=

dE

dV dϵdΩ
(6.2)

Radiation propagating through space is generally described by the radiative transfer equation.
This equation relates the intensity to absorption and emission regions and reads

dIϵ
dx

= j(ϵ) − κϵIϵ (6.3)

where the source of radiation is the emissivity j(ϵ) and the absorption is written in terms of the
spectral absorption coefficient κϵ. Introducing the optical depth dτϵ = κϵdx this equation can also
be written as

dIϵ
dτϵ

= S(ϵ) − Iϵ . (6.4)
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6. Radiative transfer

The optical depth is proportional to the amount of radiation that is absorbed by a given region of
space. A region with high optical depth is called optically thick and a region with low optical depth
is called optically thin. To relate the intensity to observations the spectral energy flux density F (ϵ)
is defined as

F (ϵ) =

∫
Ωs

n̂rn̂pIϵdΩ (6.5)

where we integrate over the emission solid angle and take into account that the direction of from
source to observer n̂p lies at an angle to the normal of the recieving area n̂r. The angle between
those two directions is given by n̂pn̂r = cosα. In astrophysics the quantity ϵF (ϵ) or νF (ν) is often
used instead of F (ϵ) or F (ν) which has the advantage that this quantity has the same shape for
different popular variable choices (Kulkarni, 2007):

νF (ν) = ν

∣∣∣∣dλdν

∣∣∣∣F (λ) = λF (λ), νF (ν) = ν

∣∣∣∣ dϵdν

∣∣∣∣F (ϵ) = ϵF (ϵ) (6.6)

Relativistic effects

We assume a spherical emission region (blob) with a homogenous magnetic field B and a radius r′b
in the reference frame of the blob. From now on primed quantities describe quantities measured in
the blob reference frame and unprimed quantities describe quantities measured in the observer’s
frame. The blob is located at a distance dL from the observer which corresponds to a redshift z. It
is moving relative to the observer with velocity β = v/c at an angle θ measured between the line
of sight and the direction of movement in the frame of the observer. This leads to a relativistic
Doppler factor

δD =
1

Γ(1 − β cos θ)
(6.7)

as shown in equation (2.3), with the bulk Lorentz factor Γ = (1 − β2)−1. The relativistic Doppler
effect leads to a change in frequency just as the classical Doppler effect for sound does, and to
a change in radiation intensity which is often termed boosting or de-boosting. On cosmological
distances and in the presence of strong gravitation the frequency of observed photons decreases
additionally. The latter case is usually encountered near black holes, e.g. for radiation originating
from the accretion disc, but since jets extend far from the black hole radiation from jets is not
categorically influenced by gravity. In contrast, in the first case this is due to the space expanding
during the time the photons travel to Earth which gets especially relevant for objects far away
which is often the case in AGN. It is usually parametrized by the dimensionless parameter z given
by the ratio of frequencies observed and emitted.

z =
ν′

ν
− 1 (6.8)

where ν′ is the emitted and ν the observed frequency. It is usually measured by observing
characteristic emission or absorption lines of atoms. Accounting for relativistic Doppler effect and
cosmological redshift the frequency of a photon in the observer frame is given by

ν =
δD

(1 + z)
ν′ (6.9)

The flux measured in the observer frame and therefore usually given in terms of spectral energy
distributions (SED) from astronomical observations can be calculated from the total emissivity
predicted by the model by Doppler-shifting and considering the observer’s distance

fν =
δ4D

4πd2L
j′(ν′) (6.10)

This formula holds for any homogenous source blob emitting isotropically (Dermer and Menon,
2009).
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6. Radiative transfer

6.2. Synchrotron radiation

The results from the calculation of a distribution of charged particles in the jet cannot be compared
directly to observations. Instead, only radiation eventually emitted from those particles is observable
on Earth. Therefore it is neccessary to discuss the processes that make particles lose their energy
by emitting photons that we can detect as radiation. While the spectrum of stars is thermal,
i.e. we observe a typical black-body radiation spectrum, this is not the case for many non-stellar
objects in the universe like for example active galactic nuclei, where other emission mechanisms
dominate the observations.

The presence of the magnetic field B causes moving electrons with a number distribution N ′
e to

emit synchrotron radiation. The emission from a single electron as seen in the blob reference frame
has the form of a pulse (Rybicki and Lightman, 1986), its width being the synchrotron timescale.
This timescale can be approximated with (Dermer and Menon, 2009)

∆tsyn ≈ 2

γ′
s

2π

ω′
L

(1 − β′
e) ≈

2πmec

eBγ′2
s

(6.11)

using the electron’s Lorentz factor β′
e and Larmor frequency ωL = eB/cme in Gaussian units. The

factor 1− β′
e ≈ 1/γ′2 accounts for the light travel time between the two positions of the electron at

the beginning and end of the pulse, assuming large γ′ ≫ 1.
From this pulse width we can derive the characteristic (peak) synchrotron frequency ν′pksyn =

1/∆tsyn. Introducing the critical magnetic field Bcr = m2
ec

3/eℏ we can write the peak frequency in
terms of a dimensionless energy:

ϵ′pksyn =
h

mec2
ν′pksyn =

B

Bcr
γ′2
s = ϵBγ

′2
s (6.12)

Up to this point only quantities in the blob reference frame have been considered. To compare
models with observations we need to transform these quantities to the observers frame. The
dimensionless photon energies transform to the observer’s reference frame in the same way as the
frequency in equation (6.9)

ϵ =
δD

(1 + z)
ϵ′ (6.13)

and therefore the electron Lorentz factor γ′
s given in terms of the observed peak photon energy

reads

γ′
s =

√
ϵ′

ϵB
=

√
(1 + z)ϵ

δDϵB
(6.14)

The synchrotron power, averaged over all pitch angles (i.e. angles between the magnetic field and
the electron velocity), emitted from a single relativistic electron is given by Rybicki and Lightman
(1986) as

P ′ =
4

3
σT cβ

′2
e γ′2

s UB =
4

3
σT cγ

′2
s UB (6.15)

since for highly relativistic particles β′
e ≈ 1. The magnetic field energy density is given by

UB = B2/8π in Gaussian units and σT = 8πq4/(3m2c4) is the well-known Thomson scattering
cross-section. This power can be incorporated into the transport equation as momentum loss ṗ by
writing it as

ṗ′ = mevγ̇
′ ≈ mecγ̇

′ =
P ′

c
=

4

3
σT γ

′2
s UB . (6.16)

A simple approximation for the spectrum of a set of electrons with different momenta can be
derived by assuming that the total synchrotron power emitted by one electron is radiated at the
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6. Radiative transfer

characteristic synchrotron frequency (equation (6.12)) of this electron, i.e.

P ′ = mec
2γ̇′ !

= mec
2

∫ ∞

0

dϵϵṄ ′
ph(ϵ) = mec

2

∫ ∞

0

dϵϵṄ ′
ph,0 δ (γ(ϵ) − γ′

s)︸ ︷︷ ︸
Ne

(6.17)

where Ṅ ′
ph = Ṅ ′

ph,0N
′
e(γ

′(ϵ′)) represents change of the photon number which is proportional to

the electron number N ′
e = δ(γ(ϵ) − γ′

s) =
√
ϵBδ(

√
ϵ−

√
ϵ′) which is split off. The latter is written

in terms of a delta distribution since we are considering the case of only one electron at the
characteristic Lorentz factor contributing to the radiation. Using a simple substitution u =

√
ϵ the

integral can be evaluated and the equation solved:∫ ∞

0

du 2u3Ṅ ′
ph,0

√
ϵBδ(u−

√
ϵ′) = 2

√
ϵ′3ϵBṄ

′
ph,0 (6.18)

⇒ ṅph(ϵ′) = Ṅ ′
ph,0ne(γ

′
s) =

2

3

σTUB

mec

1√
ϵ′ϵ3B

ne(γ
′
s) (6.19)

The last expression is written in terms of photon and electron densities and is generalized for an
arbitrary distribution of electrons. This approximation is referred to as delta approximation. From
the photon number density we can derive other relevant quantities including the total emissivity,
i.e. the emissivity integrated over volume:

j′δ(ϵ′) = ϵ′J ′δ(ϵ′) = mec
2ϵ′2V ṅ′

ph(ϵ′) =
2

3
cσTUBγ

′3
s N ′

e(γ
′
s). (6.20)

The delta approximation can be used to quickly calculate the emissivity of an arbitrary electron
distribution especially if computation time is of concern. An exact expression for the synchrotron
emissivity in the blob frame of reference is given by Crusius and Schlickeiser (1986) and Finke,
Dermer and Böttcher (2008):

j′(ϵ′) =

√
3ϵ′e3B

h

∫ ∞

1

dγ′N ′
e(γ

′)R(x) (6.21)

with

x =
4πϵ′m2

ec
3

3eBhγ′2 (6.22)

R(x) =
x

2

∫ π

0

dθ sin θ

∫ ∞

x/ sin θ

dtK5/3(t) (6.23)

and where the function K5/3(t) is the modified Bessel function of the second kind. The total
luminosity (in delta approximation) of the synchrotron emission can be calculated by integrating
the emissivity equation (6.20) over all photon energies ϵ′.

L′
tot =

∫ ∞

−∞
dϵ′J ′

syn(ϵ′) =

∫ ∞

−∞
dϵ′

j′syn(ϵ′)

ϵ′

=
2

3
cσTUB

∫ ∞

−∞
dϵ′

1

ϵBγ′2
s

γ′3
s N ′

e(γ
′
s) =

2

3
cσTUB

∫ ∞

−∞
dγ′

s(2γ
′
sϵB)

1

ϵBγ′2
s

γ′3
s N ′

e(γ
′
s)

=
4

3
cσTUB

∫ ∞

−∞
dγ′

sγ
′2
s N ′

e(γ
′
s)

(6.24)

The spectral energy density of the synchrotron photon field u′(ϵ′) can be written as (Finke, Dermer
and Böttcher, 2008)

u′(ϵ′) = ϵ′mec
2n′

ph(ϵ′) = mecr
′
bϵ

′ṅ′
ph(ϵ′) =

2

3

σT r
′
bUB

mec2
√
ϵ′ϵ3B

n′
e(γs) (6.25)
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with the synchrotron photon density n′
syn and the electron density n′

e. (E′
ph = hν′ = ϵ′mec

2)
Integrating over ϵ′ gives the total energy density

u′
tot = mecr

′
b

∫
dϵ′ϵ′ṅ′

syn(ϵ′) = mecr
′
b

3

4πr′3b mec2
L′
tot =

3

4πr′2b c
L′
tot (6.26)

where

L′
tot =

∫
dϵ′J ′(ϵ′) =

∫
dϵ′ϵ′mec

2Ṅ ′(ϵ′) =
4

3
πr′3b mec

2

∫
dϵ′ϵ′ṅ′(ϵ′) (6.27)

has been used. The timescale of synchrotron losses can be estimated by

τsyn =
E′

Ė′
=

3mc

4σT γ′UB
(6.28)

using equation (6.15) (Gupta and Basumallick, 2017). Electrons with higher energies lose energy
at a faster rate than lower-energy electrons.

6.3. Synchrotron self-Compton radiation

One observes radiation that lies above the extrapolated power laws starting in the radio band
accounted to synchrotron radiation. These are commonly explained with inverse-Compton scattering
which happens when electrons and photons scatter at each other inelastically in such a way that
the electron looses part of its energy to the photon. This can of course happen with photons from a
variety of sources as has been discussed in section 2.2.3 and in the further course the scattering of
an electron population at the synchrotron photons it emits is discussed. The Compton scattering
cross section can be given in the Thomson regime if the photon’s energy is much smaller than the
electron’s rest mass: hν ≪ mec

2 which is the case if ν ≪ 1.24 · 1020 s−1. Above this photon energy
its wavelength is comparable to the de-Broglie wavelength of the electron and quantum effects set
in. These can be incorporated by using the Klein-Nishina cross section. An expression for the
inverse-Compton emissivity when an electron population N ′

e(γ′) upscatters a photon field u′(ϵ′) is
given by Finke, Dermer and Böttcher (2008) in the Thomson and Klein-Nishina regime:

ϵ′sJ
′
ssc(ϵ

′
s) =

3

4
cσT ϵ

′2
s

∫ ∞

0

dϵ′
u′(ϵ′)

ϵ′2

∫ γ′
max

γ′
min

dγ′N
′
e(γ

′)

γ′2 FC(ϵ′, ϵ′s , γ′) (6.29)

where ϵ′s is the dimensionless energy of the scattered photon, ϵ′ is the energy of the synchrotron
photon and γ′ is the Lorentz factor of the electron. FC is the scattering kernel which is given by

FC = 2q ln q + (1 + 2q)(1 − q) +
Γ2
eq

2(1 − q)

2(1 + Γeq)
, q =

ϵ′s/γ
′

Γe(1 − ϵ′s/γ
′)
, Γe = 4ϵ′γ′ (6.30)

in the range 1/(4γ′2 ≤ q ≤ 1 and zero elsewhere. In the Thomson regime this emissivity can be
approximated by a similar delta approximation like above. This leads to

j′ssc(ϵ
′
s) =

2

3
cσTu

′
synγ

′3
T N ′

e(γ
′
T ) (6.31)

assuming a monochromatic synchrotron radiation field (Finke, Dermer and Böttcher, 2008). The
electron Lorentz factor is given by γ′

T =
√

ϵ′s/ϵ
′. For the ratio of synchrotron luminosity and inverse-

Compton luminosity a simple expression can be given (Condon and Ransom, 2015; Tavecchio,
Maraschi and Ghisellini, 1998):

Lsyn

Lssc
=

UB

u′
tot

(6.32)

This statement rises by comparing the emissivities for both radiation processes in delta approxima-
tion.
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6.4. Computation of synthetic SEDs

Using the numerical scheme discussed in the previous chapters and incorporating the radiation
losses into the propagation of the electrons, synthetic spectral energy distributions can be calculated
from the resulting electron spectra. For this we need an expression for ẏ in equation (5.8) which
can be derived using p ≈ γmc and equations (5.5) and (6.15):

ẏ =
κ0

c2β2
0pinj

ṗ =
κ0

c2β2
0pinj

ṗ =
4

3

κ0σTUBpinj
m2c4β2

0

y2 (6.33)

For the calculation of the observed fluxes the library agnpy (Nigro et al., 2022) is used which
implements the equations shown in the preceding sections. With these results momentum distribu-
tions with synchrotron losses and synthetic spectral energy distributions that one would observe
are calculated. These are shown in Figure 6.1. As expected, stronger magnetic fields lead to more
losses in the electron distribution and losses affect electrons significantly from lower energies on.
The spectral energy distribution shown in Figure 6.1 is for illustrative purposes only. To compare
it with actual observations, the electron distribution would have to reach to higher momenta which
requires much more calculation time. This is a major downside of the Monte-Carlo nature of
the method. The particle density is expected to decrease exponentially which leads to strong
Poisson noise if not enough pseudo particles are used. Additionally for every particle arriving at a
high-energy bin orders of magnitude more particles will end up in lower-energy bins which renders
the calculation inefficient.
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Figure 6.1.: Momentum distribution at the shock with synchrotron losses and proof-of-concept
synthetic spectral energy densities produced using the particle distribution for the
strongest magnetic field. For better comparison and fitting with observational data, the
momentum distribution would have to spread over more orders of magnitude.
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7. Conclusion

Numerically solving transport equations is a key way of gaining insight of the physical conditions
of AGN jets. While the method of solving the cosmic-ray transport equation with stochastic
differential equation is in principle feasible, it shows several difficulties. When simulating diffusive
shock acceleration the choice of numerical step sizes is crucial for arriving at a physical result.
Since these directly depend on the physical parameters, difficulties arise when applying the method
in prescribed circumstances. If one would apply the method to solve for a set of given plasma
parameters, for example from large-scale magnetohydrodynamic simulations, care has to be taken
that physical parameters do not exceed the tight constriants of the SDE method. In this case it
may be a solution to use variable numerical parameters, depending on the physical parameters
encountered in each time step, an idea also shown in Strauss and Effenberger (2017). Furthermore,
the choice of integration scheme also crucial to the success of the method. Another downside is
that for reproducing power-law spectra over many orders of magnitude comes with equal increases
in runtime since Poisson noise must be surpressed and many pseudo particles have to run. This
could eventually be mitigated in future work using particle splitting techniques. Nevertheless, it
sensible results can be produced and the technical benefits of using stochastic differential equations
can be exploited, for example in combining results from multiple runs with the same parameters or
in distributed computing without additional effort.

In the future, it is planned to use the method shown here as a small-scale model for magneto-
hydrodynamic simulations. Exploiting the time dependence of the model, it may be possible to
produce synthetic lightcurves to compare with observations of flares.
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A. Pitch angle- and gyrophase-averaged
distribution function

Taking the average in ϕ and µ of equation (3.25) leads to

1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ

[
∂Fi

∂t
+

∂Fa

∂t
+ vµ

(
∂Fi

∂z′
+

∂Fa

∂z′

)
− ϵωp

(
∂Fi

∂ϕ
+

∂Fa

∂ϕ

)
− S

]
=
∑
α,β

1

4π
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0

dϕ

∫ 1

−1

dµ
1

p2
∂

∂xα

[
p2Dαβ

(
∂Fi

∂xβ
+

∂Fa

∂xβ

)] (A.1)

On the left hand side of the equation the terms evaluate to:

1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ
∂Fi

∂t
=

∂Fi

∂t
(Since Fi is already the average)

(A.2)
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1
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(A.3)
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(
v
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dµ µ
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= 0 (A.4)

∂Fi

∂ϕ
= 0 (Fi is independent of ϕ) (A.5)

ϵωp

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ
∂Fa

∂ϕ
=

ϵωp

4π

∫ 1

−1

dµ [Fa]2π0 = 0 (Fa is periodic: Fa(ϕ + 2π) = Fa(ϕ))

(A.6)

1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ S = S (A.7)

and the ∂Fa/∂z
′ term remains as it is. On the right hand side there are 36 terms for each Fi and

Fa. The diffusion coefficients with any α = z′ or β = z′ vanish because g′z = 0. For Fi terms with
β = µ and β = ϕ vanish because Fi is independent from those variables. With a similar argument
as in equation (A.6) all Fa terms with β = ϕ vanish too. Fi terms with α = µ evaluate to

1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ
∂

∂µ

(
Dµβ

∂

∂xβ
Fi

)
=

1

4π

∫ 2π

0

dϕ

[
Dµβ

∂Fi

∂xβ

]µ=1

µ=−1

= 0 (A.8)

since Dµβ(µ = −1) = Dµβ(µ = 1) = 0 because there is no pitch-angle diffusion if the particle is
travelling parallel to the magnetic field. The same holds for Fa.
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A. Pitch angle- and gyrophase-averaged distribution function

For the Fi terms with α = ϕ we have

1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ
∂

∂ϕ

(
Dϕβ

∂Fi

∂xβ

)
=

1

4π

∫ 2π

0

dϕ

∫ 1

−1

dµ

(
∂Dϕβ

∂ϕ

∂Fi

∂xβ
+ Dϕβ

∂Fi

∂ϕ∂xβ

)
=

1

4π

∫ 1

−1

dµ

[(
∂Fi

∂xβ

∫ 2π

0

dϕ
∂Dϕβ

∂ϕ︸ ︷︷ ︸
=0

−
∫ 2π

0

dϕ

(
∂Fi

∂ϕ∂xβ

∫ 2π

0

dϕ
∂Dϕβ

∂ϕ︸ ︷︷ ︸
=0

))

+

(
∂Dϕβ

∂ϕ

∫ 2π

0

dϕ
∂Fi

∂ϕ∂xβ︸ ︷︷ ︸
=0

−
∫ 2π

0

dϕ

(
∂Dϕβ

∂ϕ

∫ 2π

0

dϕ
∂Fi

∂ϕ∂xβ︸ ︷︷ ︸
=0

))]

= 0

(A.9)

since Dϕβ and ∂Fi/∂xβ are periodic in ϕ because it is a periodic coordinate. The same arguments
as in equation (A.9) can be made for Fa. Summarizing these findings we have

D
Fi Fa

x′ y′ z′ p µ ϕ x′ y′ z′ p µ ϕ

x′ ✓ ✓ gz′ = 0 ✓ ∂µFi = 0 ∂ϕFi = 0 ✓ ✓ gz′ = 0 ✓ ✓ (A.6)

y′ ✓ ✓
... ✓

...
... ✓ ✓

... ✓ ✓
...

z′ gz′ = 0 · · · · · ·... · · · · · ·... · · ·... gz′ = 0 · · · · · ·... · · · · · · · · ·...

p ✓ ✓
... ✓

...
... ✓ ✓

... ✓ ✓
...

µ (A.8) · · · · · ·... · · · · · ·... · · ·... (A.8) · · · · · ·... · · · · · · · · ·...
ϕ (A.9) · · · · · ·... · · · · · ·... · · ·... (A.9) · · · · · ·... · · · · · · · · ·...

Table A.1.: Eliminated terms. The terms left over are highlighted with ✓.

We are therefore left with

S =
∂Fi

∂t
+

v

4π

∂

∂z′

∫ 2π

0

dϕ

∫ 1

−1

dµ µFa

−
∑

α,β=x′,y′,p

1

4πp2
∂

∂xα
p2

∂Fi

∂xβ

∫ 2π

0

dϕ

∫ 1

−1

dµ Dαβ

−
∑

α=x′,y′,p
β ̸=z′,ϕ

1

4πp2
∂

∂xα
p2
∫ 2π

0

dϕ

∫ 1

−1

dµ Dαβ
∂Fa

∂xβ

(A.10)
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Achterberg, A. and Krülls, W. M. (Nov. 1992). “A fast simulation method for particle acceleration.”
In: Astronomy and Astrophysics 265.1, pp. L13–L16.

Agudo, I. et al. (Jan. 2018). “POLAMI: Polarimetric Monitoring of Active Galactic Nuclei at
Millimetre Wavelengths - III. Characterization of total flux density and polarization variability
of relativistic jets”. In: Monthly Notices of the Royal Astronomical Society 473.2, pp. 1850–1867.
doi: 10.1093/mnras/stx2437. arXiv: 1709.08744 [astro-ph.GA].

Aharonian, F. A. (May 2002). “Proton-synchrotron radiation of large-scale jets in active galactic
nuclei”. In: Monthly Notices of the Royal Astronomical Society 332.1, pp. 215–230. doi:
10.1046/j.1365-8711.2002.05292.x. arXiv: astro-ph/0106037 [astro-ph].

Alfvén, H. and Herlofson, N. (June 1950). “Cosmic Radiation and Radio Stars”. In: Physical Review
78.5, pp. 616–616. doi: 10.1103/PhysRev.78.616.

Angel, J. R. P. and Stockman, H. S. (Jan. 1980). “Optical and infrared polarization of active
extragalactic objects”. In: Annual review of astronomy and astrophysics 18, pp. 321–361. doi:
10.1146/annurev.aa.18.090180.001541.

Baade, W. (May 1956). “Polarization in the Jet of Messier 87.” In: The Astrophysical Journal 123,
pp. 550–551. doi: 10.1086/146194.

Balogh, A. and Treumann, R. A. (2013). Physics of Collisionless Shocks. Space Plasma Shock
Waves. Vol. 12. Springer New York. doi: 10.1007/978-1-4614-6099-2.

Bednarz, J. and Ostrowski, M. (Nov. 1996). “The acceleration time-scale for first-order Fermi
acceleration in relativistic shock waves”. In: Monthly Notices of the Royal Astronomical Society
283.2, pp. 447–456. doi: 10.1093/mnras/283.2.447. arXiv: astro-ph/9608078 [astro-ph].

Begelman, M. C. (Dec. 1995). “The Acceleration and Collimation of Jets”. In: Proceedings of the
National Academy of Science 92.25, pp. 11442–11446. doi: 10.1073/pnas.92.25.11442.

59

https://doi.org/10.1088/0004-637X/716/1/30
https://arxiv.org/abs/0912.2040
https://doi.org/10.1111/j.1365-2966.2010.17868.x
https://academic.oup.com/mnras/article-pdf/411/4/2628/3053597/mnras0411-2628.pdf
https://academic.oup.com/mnras/article-pdf/411/4/2628/3053597/mnras0411-2628.pdf
https://doi.org/10.1111/j.1365-2966.2010.17868.x
https://doi.org/10.1046/j.1365-8711.2001.04851.x
https://arxiv.org/abs/astro-ph/0107530
https://doi.org/10.1093/mnras/stx2437
https://arxiv.org/abs/1709.08744
https://doi.org/10.1046/j.1365-8711.2002.05292.x
https://arxiv.org/abs/astro-ph/0106037
https://doi.org/10.1103/PhysRev.78.616
https://doi.org/10.1146/annurev.aa.18.090180.001541
https://doi.org/10.1086/146194
https://doi.org/10.1007/978-1-4614-6099-2
https://doi.org/10.1093/mnras/283.2.447
https://arxiv.org/abs/astro-ph/9608078
https://doi.org/10.1073/pnas.92.25.11442


Bibliography

Begelman, M. C., Blandford, R. D. and Rees, M. J. (Apr. 1984). “Theory of extragalactic radio
sources”. In: Reviews of Modern Physics 56.2, pp. 255–351. doi: 10.1103/RevModPhys.56.255.

Begelman, M. C. and Kirk, J. G. (Apr. 1990). “Shock-Drift Particle Acceleration in Superluminal
Shocks: A Model for Hot Spots in Extragalactic Radio Sources”. In: The Astrophysical Journal
353, p. 66. doi: 10.1086/168590.

Behnel, S. et al. (2011). “Cython: The best of both worlds”. In: Computing in Science & Engineering
13.2, pp. 31–39.

Bell, A. R. (Jan. 1978). “The acceleration of cosmic rays in shock fronts - I.” In: Monthly Notices
of the Royal Astronomical Society 182, pp. 147–156. doi: 10.1093/mnras/182.2.147.

Bicknell, G. V., Dopita, M. A. and O’Dea, C. P. O. (Aug. 1997). “Unification of the Radio and
Optical Properties of Gigahertz Peak Spectrum and Compact Steep-Spectrum Radio Sources”.
In: The Astrophysical Journal 485.1, pp. 112–124. doi: 10.1086/304400.

Biretta, J. A., Sparks, W. B. and Macchetto, F. (Aug. 1999). “Hubble Space Telescope Observations
of Superluminal Motion in the M87 Jet”. In: The Astrophysical Journal 520.2, pp. 621–626.
doi: 10.1086/307499.

Biretta, J. A., Zhou, F. and Owen, F. N. (July 1995). “Detection of Proper Motions in the M87
Jet”. In: The Astrophysical Journal 447, p. 582. doi: 10.1086/175901.

Blandford, R. D. and Königl, A. (Aug. 1979). “Relativistic jets as compact radio sources.” In: The
Astrophysical Journal 232, pp. 34–48. doi: 10.1086/157262.

Blandford, R. D. and Payne, D. G. (June 1982). “Hydromagnetic flows from accretion disks and
the production of radio jets.” In: Monthly Notices of the Royal Astronomical Society 199,
pp. 883–903. doi: 10.1093/mnras/199.4.883.

Blandford, R. D. and Znajek, R. L. (May 1977). “Electromagnetic extraction of energy from Kerr
black holes.” In: Monthly Notices of the Royal Astronomical Society 179, pp. 433–456. doi:
10.1093/mnras/179.3.433.

Blandford, R. and Eichler, D. (Oct. 1987). “Particle acceleration at astrophysical shocks: A theory of
cosmic ray origin”. In: Physics Reports 154.1, pp. 1–75. doi: 10.1016/0370-1573(87)90134-7.
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